Introduction
ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。
ベイズの定理
ベイズの定理とは
$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$
例
例えば、次のように事象A、事象Bwo定義します。
この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。)
確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。
確率P(A|B)が低い時を考えてみましょう。
つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。
ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。
つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuberが50万円以上使う動画を投稿すr確率がかなり、低い。このどちらかが考えられます。P(A)が高いとき、そのYouruberが単に大人気なのであって、動画の再生回数が100万回を超える原因が50万円以上お金を使ったことにあるとは限りません。また、P(B)が低いとき、つまり、50万円以上お金を使った動画が少ないときは、たまたま、100万円を超えただけで、本当の原因が50万円以上使ったことにあるとは限りません。
このようにベイズの定理では、結果から原因を推定する力があります。
式の導出
最後にベイズの定理の式を導出しようと思います。まず条件付き確率の式を確認します。ある事象Bが起こった時、事象Aが起こっている確率(条件付き確率)は
$$P(A|B) = \frac{P(A,B)}{P(B)}$$
ただし、P(A,B)はAとBの同時確率を表します。
この式をベイズの定理の式の右辺に代入します。
$$\frac{P(A|B)P(B)}{P(A)} = \frac{\frac{(P(A,B)}{P(B)} P(B)}{P(A)} = P(B|A)$$
References
https://ja.wikipedia.org/wiki/ベイズの定理
sorry, this page is Japanese only.
今回はベイズの定理について書こうと思います。ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。
ベイズの定理
ベイズの定理とは
- 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率)
- 確率P(B):事象Aが起こる前の事象Bの確率(事前確率)
$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$
例
例えば、次のように事象A、事象Bwo定義します。
- 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える
- 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する
この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。)
確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。
確率P(A|B)が低い時を考えてみましょう。
つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。
ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。
つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuberが50万円以上使う動画を投稿すr確率がかなり、低い。このどちらかが考えられます。P(A)が高いとき、そのYouruberが単に大人気なのであって、動画の再生回数が100万回を超える原因が50万円以上お金を使ったことにあるとは限りません。また、P(B)が低いとき、つまり、50万円以上お金を使った動画が少ないときは、たまたま、100万円を超えただけで、本当の原因が50万円以上使ったことにあるとは限りません。
このようにベイズの定理では、結果から原因を推定する力があります。
式の導出
最後にベイズの定理の式を導出しようと思います。まず条件付き確率の式を確認します。ある事象Bが起こった時、事象Aが起こっている確率(条件付き確率)は
$$P(A|B) = \frac{P(A,B)}{P(B)}$$
ただし、P(A,B)はAとBの同時確率を表します。
この式をベイズの定理の式の右辺に代入します。
$$\frac{P(A|B)P(B)}{P(A)} = \frac{\frac{(P(A,B)}{P(B)} P(B)}{P(A)} = P(B|A)$$
References
https://ja.wikipedia.org/wiki/ベイズの定理
コメント
コメントを投稿