スキップしてメイン コンテンツに移動

SVMの理論 part 2

Introduction

今日はSVMの定理について書いていきます。
この記事はpart 2になります。Part 1 では目的関数の導出までを書きました。Part 2では双対問題とゆわれるものを導出します。Part 1で導いた目的関数は主問題と呼ばれます。一般的に、SVMでは主問題ではなく、双対問題を解くことで最適解を得ます。

もし、まだPart 1を見ておられない場合は、Theorem of SVM part 1を見てくださるとよいのではないかと思います。

SVMの実装編は
Implement linear SVM
Implement kernel SVM
を御覧ください。

概要
  • 主問題
  • 双対問題 
  • ラグランジュ関数
  • 主変数について、最小化、双対変数について最大化
  • 双対変数について最大化、主変数について最小化


主問題
Part 1で導いた主問題の復習をしておきます。

$$\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$

$$~~s.t~~ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1 - \epsilon_i ,~~~, \forall i \in N~\epsilon \geq 0$$

これはソフトマージンの時の目的関数ですが、以後ソフトマージンの場合のみを扱っていきます。

さて、双対問題と呼ばれるものですが、これは主問題から自然に導かれます。

双対問題

SVMの最適化問題は凸二次最適化問題と呼ばれる種類の問題です。凸二次最低化問題は、必ず大域最適解に近づくことが知れれており、数値上の安全性が高いとされています。

双対問題を導出します。まず、主問題を以下のように書き換えます。

$$\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$

$$~~s.t~~ \forall i \in N, -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \}\leq 0,~~~, \forall i \in N~ -\epsilon \leq 0$$

Lagurange function

次に、新たに$\alpha,\mu$という要素に非負のパラメータを持つベクトルを導入します。これは以下のラグランジュ関数を定義するためです。
ラグランジュ関数は以下のようになります。

$$L(w,b,\epsilon,\alpha,\mu) := \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i -\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i$$

ここで、$\alpha = (\alpha_1,\alpha_2,...,\alpha_n)$、$\mu = (\mu_1,\mu_2,..,\mu_n)$です。

$w,b,\epsilon$は主変数といい、一方$\alpha,\mu$は双対変数と呼ばれています。

主変数についての最小化、双対変数についての最大化


新たに$P(w,b,\epsilon)$を$\alpha,\mu$についてLを最大化することで定義します。

$$P(w,b,\epsilon):= \max_{\alpha \geq 0, \mu \geq 0} L(w,b,\epsilon,\alpha,\mu)$$

次にPを主変数について最小化します。

$$\min_{w,b,\epsilon} P(w,b,\epsilon) = \min_{w,b,\epsilon}\max_{\alpha \geq 0, \mu \geq 0} L(w,b,\epsilon,\alpha,\mu)$$

この最適化問題は元の主問題と同等であることを示します。(ここでの同等とは、どちらの最適化問題を解いても同じ解が得られることとします。)

$\min_{w,b,\epsilon} P(w,b,\epsilon)$を次のように書き替えます。

$$\min_{w,b,\epsilon} P(w,b,\epsilon) = \min_{w,b,\epsilon}\max_{\alpha \geq 0, \mu \geq 0} L(w,b,\epsilon,\alpha,\mu)$$
$$= \min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i + \max_{\alpha \geq 0,\mu \geq 0} \{-\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i \}$$

最初の項と二つ目の項は$\alpha,\mu$とは関係のない項なのでこのように書き換えられました。

一方、主問題は

$$\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$

$$~~s.t~~ \forall i \in N, -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \}\leq 0,~~~, \forall i \in N~ -\epsilon \leq 0$$
でした。

さて、
もし、$\exists ~i \in N ~~s.t.~~ -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} >  0$,  or $-\epsilon > 0$であれば、私たちは$\min_{w,b,\epsilon} P(w,b,\epsilon)$を解くことができません。なぜなら$\alpha,\mu$をどこまでも大きくすることができてしまい、$P(w,b,\epsilon)$の値が$\infty$をとってしまいます。

しかし、$\forall ~i \in N, -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \}\leq 0$ と$~ -\epsilon \leq 0$を二つとも満たしているとき、

$$\max_{\alpha \geq 0,\mu \geq 0} \{-\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i \} = 0$$
となります。

この時、
$$\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i + \max_{\alpha \geq 0,\mu \geq 0} \{-\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i \}$$
$$= \min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$

となり、元の最適化問題が現れました。
つまり、制約を満たしているときは、$\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$に解が与えられ、満たしていないときはこの最適化問題は解けないということになり、同等であることがわかります。

双対変数について最大化し、主変数について最小化する

次に、$D(\alpha,\mu)$を主変数について最適化することで定義します。

$$D(\alpha,\mu) := \min_{w,b,\epsilon,\alpha,\mu} L(w,b,\epsilon,\alpha,\mu)$$

次に、
$D(\alpha,\mu)$を$\alpha,\mu$について最大化することを考えます。

$$\max_{\alpha,\mu} D(\alpha,\mu) = \max_{\alpha,\mu} \min_{w,b,\epsilon,\alpha,\mu} L(w,b,\epsilon,\alpha,\mu)$$

この問題は双対問題と呼ばれます。先ほどと違う点に注意が必要です。
先ほどの主問題では、初めに双対変数について最大化し、そのあと主変数について最小化しました。今回はまず初めに、主変数について最小化し、そのあとで双対変数について、最大化します。

$\min_{w,b,\epsilon,\alpha,\mu} L(w,b,\epsilon,\alpha,\mu)$について、それぞれの変数による偏微分は

$$\frac{\partial L}{\partial w} = w - \sum_{i \in {1,2,..,n}} \alpha_i y_i x_i = 0$$
$$\frac{\partial L}{\partial b} = - \sum_{i \in {1,2,..,n}} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \epsilon} = C - \alpha_i - \mu_i = 0$$
となります。

Lを各項について分配法則を使い、書き換えます。
\begin{eqnarray*}
L &=& \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i -\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i\\
&=& \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i -\sum_{i \in {1,2,..,n}} \alpha_i y_i w^T \phi(x) + \alpha_i y_i b - \alpha_i + \alpha_i \epsilon_i - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i\\
&=& \frac{1}{2}||W||^2 - \sum_{i \in {1,2,..,n}} \alpha_i y_i w^T x_i - b \sum_{i \in {1,2,..,n}} \alpha_i y_i + \sum_{i \in {1,2,..,n}} \alpha_i + \sum_{i \in {1,2,..,n}} (C - \alpha_i - \mu_i) \epsilon_i
\end{eqnarray*}

この式に先ほどの偏微分によって得られた方程式を代入します。

$$-\frac{1}{2} \sum_{i,j \in {1,2,..,n}} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j) + \sum_{i \in {1,2,..,n}} \alpha_i$$

そして、
\begin{eqnarray*}
C - \alpha_i - \mu_i &=& 0 \\
C - \alpha_i &=& \mu \geq 0\\
C - \alpha_i & \geq & 0
\end{eqnarray*}
であるので、

$$\max_{\alpha} -\frac{1}{2}\sum_{i,j \in {1,2,..,n}} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j)+\sum_{i \in {1,2,..,n}} \alpha_i$$
$$s.t. \sum_{i \in {1,2,..,n}} \alpha_i y_i = 0 ~~~ , 0 \leq \alpha_i \leq C$$
と、書き換えられます。
よって最終的に双対問題は以下のように表されます。

$$\min_{\alpha} \frac{1}{2}\sum_{i,j \in {1,2,..,n}} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j)-\sum_{i \in {1,2,..,n}} \alpha_i$$
$$s.t. \sum_{i \in {1,2,..,n}} \alpha_i y_i = 0 ~~~ , 0 \leq \alpha_i \leq C$$

Reference
https://www.amazon.co.jp/%E3%82%B5%E3%83%9D%E3%83%BC%E3%83%88%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E3%83%9E%E3%82%B7%E3%83%B3-%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%97%E3%83%AD%E3%83%95%E3%82%A7%E3%83%83%E3%82%B7%E3%83%A7%E3%83%8A%E3%83%AB%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA-%E7%AB%B9%E5%86%85-%E4%B8%80%E9%83%8E/dp/4061529064

コメント

このブログの人気の投稿

Implementation of Robbins monro

Robbins monro の実装 sorry, this page is Japanese only.   今回はRobbins monro の実装をしてみました。 Robbins monroは確率勾配降下法の学習率を入りテーション回数の逆数で割っていくものです。 使っているprogram言語はpython 3です。osはwindowsです。(macほしい...) アルゴリズム 確率勾配降下方とは目的関数の最適解を求めるアルゴリズムです。目的関数をf(X)とすると、手順は以下のようになっています。 初期学習率$n_0$を決めます。訓練データDを用意します。この訓練データは複数の初期値の集まりです。 訓練データから一つ初期値をランダムに取り出し、これを$x_0$とし、最初の予測値とします。 次の式に現在の予測値$x_0$を代入し、新たな予測値$x_{n+1}$を得ます。$$x_{n+1} = x_{n} - \frac{n_0}{n} grad f(X_n)$$ 収束して入れば4へ、収束していなければ2で得られた値$x{n+1}$を新たに$x_n$としてもう一度2を行う。 訓練データを一周していなければ2へ、一周していれば各初期値から得られた解の中から目的関数を最も小さくするものを選ぶ。   実装例 以下の目的関数を最小化させてみましょう。 $$f(x,y) = (x-2)^2 + (y-3)^2 $$ コマンドラインでpythonを実行していきます。 予想通り、(2,3)という解を導き出してくれました。目的関数が簡単だったので、初期値をどの値でとってもばっちり正解にたどり着いてくれました。 CODE 以下にRobbins monroの関数だけ置いておきます。 こちら にすべてのコードを載せています。 def Robbins_monro(function,grad,number_variable_gradient): init_learning_rate = 1.5 stepsize = 1000 init_value = np.array([range(-1000,1020,20) for i in range(number_v...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

dijkstra method

Introduction 日本語 ver Today, I will write about the dijkstra method. This method is algorithm which find the shortest distance. The map is expressed by graph. If you never see  this page , look at its page. This page explain the heap structure and definition of graph. The dijkstra method used heap structure, Because heap structure reduce the amout of calculation of dijkstra method. I use  this slide  to explain dijkstra. Overview Algorithm Implementation Algorithm This algorithm is  Decide start node, and this node named A. Allocate $d=\infty$ for each node, but d=0 for start node. Adjacent node of A named adj_list.  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. Remove A from graph network. Find node which have the smallest d and it named A, and if network have node, back to 4. I explain this algorithm by drawing.  I explain algorithm by using this graph.  Fis...