スキップしてメイン コンテンツに移動

Theorem of SVM part 1

Introduction  

I will explain theorem of SVM.
Please look at my implementation of SVM.
Implement linear SVM
Implement kernel SVM
Today, I will explain about SVM until deriving the objective function.


Overview  
  • Generalized linear model  
  • Explain SVM
  • hard margin  
  • soft margin  



Generalized linear model  

SVM is used generalized linear model. Generalized linear model is following function
$$f(x) = w^T\phi(x) + b$$
b is called bias.
$$0 = w^T\phi(x) + b$$is hyper plane. This hyper plane separate two class of $\phi(x)$.
hyper plance is n-dimensional plane. if n = 1, hyper plane is line. if n = 2, hyper plane is normal plane.
$\phi(x)$ have effect of converting x to data which can be separated by a line.
image of $\phi(x)$ is



the left image has nonlinear data.
right image has linear data.
$\phi(x)$ convert from left image to right image.
I will handle $w^T \phi(x) + b$ as line in feature space.

Next, I will explain the object of SVM

Explain SVM
    the label is 1 or -1 in SVM. Let label is y $\in \{1,-1\}$. Let dataset is X.
    We want to make decisions function which $\forall x \in X$

    $$f(x_i) > 0 \implies y_i = 1 $$
    $$f(x_i) < 0 \implies y_i = -1$$

    Let f(x) is $w^T \phi(x) + b$, I will optimize w and b of parametor.
    However, optimization needs a standard of a good boundary. Its standard is magin. Next, I will explain hard margin.

    Hard margin
      SVM decide a boundary line by a value called margin.
      What is margin? I will explain.

      pick up data which exist nearest from $w^T \phi(x) +b = 0$. Margin is the distance between the data and $w^T \phi(x) +b = 0$.
      Look at following image of margin in 2-dimensional.



      this distance of green line is margin. SVM decide $w^T \phi(x) + b= 0$ to depend on only data which exist nearest from $w^T \phi(x) + b = 0$. This data called sopport vector.

      We decide w and b of the parameter by a maximum margin.

      Let dataset is X, $\forall x_i \in X$, distance between x and $w^T \phi(x) + b = 0$ is
      $$\frac{|w^T \phi(x_i) + b|}{||W||}$$

      Now, Assume linear hyperplane is enabled to complicately classify.


      this image is data which complicately separated hyperplane.

      this image is else data.

      Thus,
      $$f(x_i) > 0 \implies y_i = 1 $$
      $$f(x_i) < 0 \implies y_i = -1$$
      is complitely practical.

      Therefore,
      $$\forall i \in N,~~~~~~~y_i(w^T \phi(x_i) + b) > 0$$

      Therefore
      $$\frac{|w^T \phi(x_i) + b|}{||W||} = \frac{y(w^T \phi(x_i) + b)}{||W||}$$
      Next, Let $i_0$ as follow.

      $$\forall i_0 \in \arg_{n \in N} \min_{x \in X} \frac{|w^T \phi(x_n) + b|}{||W||}$$,
      Let M is
      $$M = y_{i_0}(w^T \phi(x_{i_0}) + b)$$
      Because $\forall i \in N,~y_i(w^T \phi(x_i) + b) > 0$, $M > 0$ is practical.

      M is value of distance between $w^T \phi(x) + b = 0$ and data which exist nearest $w^T \phi(x) + b = 0$

      The objective function in SVM is expressed as follow.

      $$\max_{w,b,M} \frac{M}{||W||}$$ $$~~s.t~~ \forall i \in N ~, y_i(w^T \phi(x_i) + b) \geq M$$

      Here, when $w^{\star}  = \frac{w}{M}, b^{\star}  = \frac{b}{M}$, the objective function is expressed as follow.
      $$\max_{w^{\star},b^{\star}} \frac{1}{||W^{\star}||}$$
      $$~~s.t~~ \forall i \in N, y_i (w^{\star} \phi(x_i) + b^{\star}) \geq 1$$

      I convert this from. because $||W^{\star}|| > 0$,
      $$\max_{w^{\star},b^{\star}} \frac{1}{||W^{\star}||}$$
      $$\iff \min_{w^{\star},b^{\star}}  ||W^{\star}||$$
      $$\iff \min_{w^{\star},b^{\star}}  ||W^{\star}||^2$$

      therefore, the objectice function in SVM is
      $$\min_{w,b}  ||W||^2$$
      $$~~s.t~~ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1$$

      I define $W^{\star} = W, b^{\star} = b$ again.

      We assume data is completely separated by a hyperplane. This method is called hard margin.

      However this assumption is strict in the real world, so the soft margin is invented.
      Next, I will explain soft margin.

      Soft margin
        I introduce $\epsilon_i \geq 0$ the objective function.

        I loosen $\forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1$. This condition is rewrited as follow.

        $$ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1 - \epsilon_i$$

        if $x_i$ is beyond $w^T \phi(x) + b = 0$, $\epsilon_i > 0$ is practical.

        $x_5$ and $x_8$ and $x_9$ is beyond $w^T \phi(x) + b = 0$.
        This distance of black line is $\epsilon_i$

        I rewrite the objective function.
        $$\min_{w,b}  \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$
        $$~~s.t~~ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1 - \epsilon_i ,~~~~\epsilon \geq 0 , \forall i \in N$$

        C is called regulation parameter.
        This parameter is a hyperparameter, so We decide before computing SVM algorithm.
        C has the role which adjusts degree of suppression of misclassification.
        The smaller C is, The smaller effect of $\sum_{i \in N}\epsilon_i$ is. Thus, it is easy to accept misclassification. On the other hand, the bigger C is, The bigger effect of $\sum_{i \in N}\epsilon_i$ is.
        When $C = \infty$, It become hard margin.

        Reference
          https://www.amazon.co.jp/%E3%82%B5%E3%83%9D%E3%83%BC%E3%83%88%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E3%83%9E%E3%82%B7%E3%83%B3-%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%97%E3%83%AD%E3%83%95%E3%82%A7%E3%83%83%E3%82%B7%E3%83%A7%E3%83%8A%E3%83%AB%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA-%E7%AB%B9%E5%86%85-%E4%B8%80%E9%83%8E/dp/4061529064

          コメント

          このブログの人気の投稿

          MAP estimation

          Introduction 日本語 ver Today, I will explain MAP estimation(maximum a posteriori estimation). MAP estimation is used Bayes' thorem. If sample data is few, we can not belive value by Maximum likelihood estimation. Then, MAP estimation is enable to include our sense.  Overveiw Bayes' theorem MAP estimation Conjugate distribution Bayes' theorem  Bayes' theorem is $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ $P(A|B)$ is Probability when B occur. Please go on  http://takutori.blogspot.com/2018/04/bayes-theorem.html to know detail of Bayes' theorem. Map estimation Map estimation is used Bayes' theorem. Map estimation estimate parameter of population by maximuzing posterior probability. Now, suppoce we get data $x_1,x_2,...,x_n$ from population which have parameter $\theta$. Then, we want to $P(\theta|x_1,x_2,...,x_n)$. Here, we use Bayes' theorem. $$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}...

          MAP推定

          Introduction English ver 今日はMAP推定(事後確率最大化法)について書きました。MAP推定ではベイズの定理を使います。データが少ないとき、最尤推定の結果をあまり信用できない話は、最尤推定の時に書きました。この時、MAP推定では自分の事前に持っている情報を取り入れることができます。 概要 ベイズの定理 MAP推定 共役分布 MAP推定の例 ベイズの定理 ベイズの定理は $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ です。 ただし、 $P(A|B)$ はBが起こった時のAの起こる確率です。 詳しくは  http://takutori.blogspot.com/2018/04/bayes-theorem.html  を見てください。 Map推定 MAP推定ではベイズの定理を使います。MAP推定は事後確率が最大になるようなパラメータを選びます。 いま、$x_1,x_2,...,x_n$というデータを$\theta$というパラメータを持つ分布から得られたとする。この時$P(\theta|x_1,x_2,...,x_n)$を求めたい。 ここで、ベイズの定理を使う。 $$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}$$ ここで、$P(\theta)$は$\theta$の事前分布である。 $x_1,x_2,...,x_n$はそれぞれ独立であるので、 $$P(x_1,x_2,...,x_n | \theta ) = \Pi_{i=1}^n P(x_i|\theta)$$. よって、マップ推定は $$\theta^{\star} = \arg \max_{\theta} \frac{\Pi_{i=1}^n P(x_i|\theta) P(\theta)}{P(x_1,x_2,...,x_n)}$$ となる。 $P(x_1,x_2,...,x_n)$という値は$\theta$には依存しない。よって、定数であり、最適化に定数は関係ないので、排除すると、MAP推定は次のようになる。 $$\th...

          Implementation of Robbins monro

          Robbins monro の実装 sorry, this page is Japanese only.   今回はRobbins monro の実装をしてみました。 Robbins monroは確率勾配降下法の学習率を入りテーション回数の逆数で割っていくものです。 使っているprogram言語はpython 3です。osはwindowsです。(macほしい...) アルゴリズム 確率勾配降下方とは目的関数の最適解を求めるアルゴリズムです。目的関数をf(X)とすると、手順は以下のようになっています。 初期学習率$n_0$を決めます。訓練データDを用意します。この訓練データは複数の初期値の集まりです。 訓練データから一つ初期値をランダムに取り出し、これを$x_0$とし、最初の予測値とします。 次の式に現在の予測値$x_0$を代入し、新たな予測値$x_{n+1}$を得ます。$$x_{n+1} = x_{n} - \frac{n_0}{n} grad f(X_n)$$ 収束して入れば4へ、収束していなければ2で得られた値$x{n+1}$を新たに$x_n$としてもう一度2を行う。 訓練データを一周していなければ2へ、一周していれば各初期値から得られた解の中から目的関数を最も小さくするものを選ぶ。   実装例 以下の目的関数を最小化させてみましょう。 $$f(x,y) = (x-2)^2 + (y-3)^2 $$ コマンドラインでpythonを実行していきます。 予想通り、(2,3)という解を導き出してくれました。目的関数が簡単だったので、初期値をどの値でとってもばっちり正解にたどり着いてくれました。 CODE 以下にRobbins monroの関数だけ置いておきます。 こちら にすべてのコードを載せています。 def Robbins_monro(function,grad,number_variable_gradient): init_learning_rate = 1.5 stepsize = 1000 init_value = np.array([range(-1000,1020,20) for i in range(number_v...