スキップしてメイン コンテンツに移動

Theorem of SVM part 1

Introduction  

I will explain theorem of SVM.
Please look at my implementation of SVM.
Implement linear SVM
Implement kernel SVM
Today, I will explain about SVM until deriving the objective function.


Overview  
  • Generalized linear model  
  • Explain SVM
  • hard margin  
  • soft margin  



Generalized linear model  

SVM is used generalized linear model. Generalized linear model is following function
$$f(x) = w^T\phi(x) + b$$
b is called bias.
$$0 = w^T\phi(x) + b$$is hyper plane. This hyper plane separate two class of $\phi(x)$.
hyper plance is n-dimensional plane. if n = 1, hyper plane is line. if n = 2, hyper plane is normal plane.
$\phi(x)$ have effect of converting x to data which can be separated by a line.
image of $\phi(x)$ is



the left image has nonlinear data.
right image has linear data.
$\phi(x)$ convert from left image to right image.
I will handle $w^T \phi(x) + b$ as line in feature space.

Next, I will explain the object of SVM

Explain SVM
    the label is 1 or -1 in SVM. Let label is y $\in \{1,-1\}$. Let dataset is X.
    We want to make decisions function which $\forall x \in X$

    $$f(x_i) > 0 \implies y_i = 1 $$
    $$f(x_i) < 0 \implies y_i = -1$$

    Let f(x) is $w^T \phi(x) + b$, I will optimize w and b of parametor.
    However, optimization needs a standard of a good boundary. Its standard is magin. Next, I will explain hard margin.

    Hard margin
      SVM decide a boundary line by a value called margin.
      What is margin? I will explain.

      pick up data which exist nearest from $w^T \phi(x) +b = 0$. Margin is the distance between the data and $w^T \phi(x) +b = 0$.
      Look at following image of margin in 2-dimensional.



      this distance of green line is margin. SVM decide $w^T \phi(x) + b= 0$ to depend on only data which exist nearest from $w^T \phi(x) + b = 0$. This data called sopport vector.

      We decide w and b of the parameter by a maximum margin.

      Let dataset is X, $\forall x_i \in X$, distance between x and $w^T \phi(x) + b = 0$ is
      $$\frac{|w^T \phi(x_i) + b|}{||W||}$$

      Now, Assume linear hyperplane is enabled to complicately classify.


      this image is data which complicately separated hyperplane.

      this image is else data.

      Thus,
      $$f(x_i) > 0 \implies y_i = 1 $$
      $$f(x_i) < 0 \implies y_i = -1$$
      is complitely practical.

      Therefore,
      $$\forall i \in N,~~~~~~~y_i(w^T \phi(x_i) + b) > 0$$

      Therefore
      $$\frac{|w^T \phi(x_i) + b|}{||W||} = \frac{y(w^T \phi(x_i) + b)}{||W||}$$
      Next, Let $i_0$ as follow.

      $$\forall i_0 \in \arg_{n \in N} \min_{x \in X} \frac{|w^T \phi(x_n) + b|}{||W||}$$,
      Let M is
      $$M = y_{i_0}(w^T \phi(x_{i_0}) + b)$$
      Because $\forall i \in N,~y_i(w^T \phi(x_i) + b) > 0$, $M > 0$ is practical.

      M is value of distance between $w^T \phi(x) + b = 0$ and data which exist nearest $w^T \phi(x) + b = 0$

      The objective function in SVM is expressed as follow.

      $$\max_{w,b,M} \frac{M}{||W||}$$ $$~~s.t~~ \forall i \in N ~, y_i(w^T \phi(x_i) + b) \geq M$$

      Here, when $w^{\star}  = \frac{w}{M}, b^{\star}  = \frac{b}{M}$, the objective function is expressed as follow.
      $$\max_{w^{\star},b^{\star}} \frac{1}{||W^{\star}||}$$
      $$~~s.t~~ \forall i \in N, y_i (w^{\star} \phi(x_i) + b^{\star}) \geq 1$$

      I convert this from. because $||W^{\star}|| > 0$,
      $$\max_{w^{\star},b^{\star}} \frac{1}{||W^{\star}||}$$
      $$\iff \min_{w^{\star},b^{\star}}  ||W^{\star}||$$
      $$\iff \min_{w^{\star},b^{\star}}  ||W^{\star}||^2$$

      therefore, the objectice function in SVM is
      $$\min_{w,b}  ||W||^2$$
      $$~~s.t~~ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1$$

      I define $W^{\star} = W, b^{\star} = b$ again.

      We assume data is completely separated by a hyperplane. This method is called hard margin.

      However this assumption is strict in the real world, so the soft margin is invented.
      Next, I will explain soft margin.

      Soft margin
        I introduce $\epsilon_i \geq 0$ the objective function.

        I loosen $\forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1$. This condition is rewrited as follow.

        $$ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1 - \epsilon_i$$

        if $x_i$ is beyond $w^T \phi(x) + b = 0$, $\epsilon_i > 0$ is practical.

        $x_5$ and $x_8$ and $x_9$ is beyond $w^T \phi(x) + b = 0$.
        This distance of black line is $\epsilon_i$

        I rewrite the objective function.
        $$\min_{w,b}  \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$
        $$~~s.t~~ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1 - \epsilon_i ,~~~~\epsilon \geq 0 , \forall i \in N$$

        C is called regulation parameter.
        This parameter is a hyperparameter, so We decide before computing SVM algorithm.
        C has the role which adjusts degree of suppression of misclassification.
        The smaller C is, The smaller effect of $\sum_{i \in N}\epsilon_i$ is. Thus, it is easy to accept misclassification. On the other hand, the bigger C is, The bigger effect of $\sum_{i \in N}\epsilon_i$ is.
        When $C = \infty$, It become hard margin.

        Reference
          https://www.amazon.co.jp/%E3%82%B5%E3%83%9D%E3%83%BC%E3%83%88%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E3%83%9E%E3%82%B7%E3%83%B3-%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%97%E3%83%AD%E3%83%95%E3%82%A7%E3%83%83%E3%82%B7%E3%83%A7%E3%83%8A%E3%83%AB%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA-%E7%AB%B9%E5%86%85-%E4%B8%80%E9%83%8E/dp/4061529064

          コメント

          このブログの人気の投稿

          K-means 理論編

          Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

          ダイクストラ法

          Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

          カーネルK-means 理論編

          Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...