スキップしてメイン コンテンツに移動

Implement kernel SVM

Introduction


Today, I implement the kernel SVM.
Oputimization is interror point method.
This post is written about Implementation.
I will write Theorem of kernel SVM in another post.
I will put when writing its post finished.

# I finished writing theorem of SVM.
Theorem of SVM part1

My computer is windows.
Also, OS is windows.
I implement by Python3.

Overview

  • introduce kernel
  • introduce dataset
  • result of implementation

kernel

The kernel is the method of solving the nonlinear problem.
kernel is map converting data so that linear can separate class of data.
enter image description here
⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓⇓↓
enter image description here
Converting data is expressed \(\phi(x)\).
\[\phi:x -> \phi(x)\]
but, kernel function is used \[K(x,y)=\phi(x)^T \phi(y)\] in SVM,
Because, SVM can cumpute only \(\phi(x)^T \phi\).
The famous kernel is RBF and polynomial.
  • RBF
    \[K(x,y) = \exp(-\gamma ||x-y||^2)\]
  • polynomial
    \[K(x,y) = (x^Ty+c)^p\]
If \(K(x,y) = x^Ty\) , This is linear SVM.

Dataset

Today, I use following two data generated from normal distribution by np.random.randn.
enter image description here
and
enter image description here
The code making this dataset is upload in github.
code of making dataset

Implementation

I used RBF kernel.
gamma is 0.5
Regularization coefficient is 50.
enter image description here
next, I use RBF kernel.
gamma is 0.5.
Regularization coefficient is 100.
enter image description here
My code is published github.
kernel SVM code

Reference

https://qiita.com/ta-ka/items/e6fd0b6fc46dbab4a651
http://aidiary.hatenablog.com/entry/20100501/1272712699
https://www.amazon.co.jp/%E3%82%B5%E3%83%9D%E3%83%BC%E3%83%88%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E3%83%9E%E3%82%B7%E3%83%B3-%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%97%E3%83%AD%E3%83%95%E3%82%A7%E3%83%83%E3%82%B7%E3%83%A7%E3%83%8A%E3%83%AB%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA-%E7%AB%B9%E5%86%85-%E4%B8%80%E9%83%8E/dp/4061529064

コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

Entropy

Introduction sorry, this page is Japanese only.   今日はエントロピーについて書こうと思います。これは確率論や統計学で死ぬほど大事なKLダイバージェンスといものを理解するために必要な知識です。 この記事ではエントロピーについてしか書きませんが、今度KLダイバージェンスについても書こうと思います。 KLダイバージェンスの記事はこちら Entropy 直観的な話 ある事象、「例えば明日大学の講義にX分遅刻する」という事象を考えます。 この事象に対する確率がP(X)が与えられているとしましょう。P(1)は一分遅刻する確率です。この時確率分布P(X)が持つ情報量はどれだけのものかとうことを考えたいとします。 明日の講義はテストを受けるとします。そのテストを受けないと単位を落としてしまします。しかし、テスト前日はすごく寝不足としましょう。遅刻する確率が99パーセントとわかった時、ほとんどどうあがいても遅刻するのであれば単位を落とすのはほぼ確実といえます。 よって前日に徹夜で勉強するよりも、睡眠不足を解消するために寝る方がよっぽど効率的であることがわかります。しかし、遅刻をする確率が50パーセントとわかった時、前日にテスト勉強をすればよいのか、せずに睡眠をとればよいのかわかりません。このように、確率が偏っているほど何が起こるか予測しやすく、対策を立てやすいのです。遅刻する確率が99パーセントとわかる時は遅刻する確率が50パーセントとわかった時に比べて圧倒的に多いはずです。 確率P(X)に対してこの情報量のことをP(X)の 自己エントロピー といいます。 そして、自己エントロピーの期待値のことを 平均エントロピー といいます。 立式 性質 ではこの情報量を数式で表していきましょう。まず自己エントロピーには大事な性質が二つあります。それが 互いに独立な確率変数の自己エントロピーはそれぞれの情報量の和で表される。 自己エントロピーは減少関数である。 の二つです。 自己エントロピーの加法性 互いに独立な確率変数の情報慮はそれぞれの情報量の和でなければいけません。例えば「明日の講義がY分早く終わる」という事象を考えます。この確率変数Yはあなたが何分講義に遅刻...