スキップしてメイン コンテンツに移動

Thorem of SVM part 2

Introduction

This post is written about theorem of SVM.
This post is part 2. Part 1 is written about deriving the objective function. I will write about dual problem. The objective function which deriving in Part 1 is called the main problem. Typically, We optimize not the main problem, but the dual problem. I will write about deriving the dual problem from the main problem.

If you until look up part 1, please look up
Theorem of SVM part 1.

I implement SVM. It post is
Implement linear SVM
Implement kernel SVM

Overview


  • Main problem
  • Dual problem 
  • Lagurange function
  • maximize L about dual variable, minimize L about primal variable
  • minimize L about primal variable, maximize L about dual variable.


Main problem
I will review the main problem in Part 1.

$$\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$

$$~~s.t~~ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1 - \epsilon_i ,~~~, \forall i \in N~\epsilon \geq 0$$

This problem is called soft margin. I will handle soft margin of the main problem.

Dual problem is naturally derived from the main problem.

Dual problem

Optimization problem of SVM is a kind of convex quadratic optimization problem. Convex quadratic optimization problem is a kind of optimizatio plroblem. It is easy to solve convex quadratic optimization problem. It is found the global optimal solution, because the objectice function is convex.


I will drive dual problem. Firstly, I change the main problem into

$$\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$

$$~~s.t~~ \forall i \in N, -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \}\leq 0,~~~, \forall i \in N~ -\epsilon \leq 0$$

Lagurange function
Secondly, I will introduce new vector $\alpha,\mu$ which has element of non-negative paremeter to define Laguranju function. Lagrange function is

$$L(w,b,\epsilon,\alpha,\mu) := \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i -\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i$$

Here, $\alpha = (\alpha_1,\alpha_2,...,\alpha_n)$ and $\mu = (\mu_1,\mu_2,..,\mu_n)$.
The paremeter $w,b,\epsilon$ is called primal variable and paremeter $\alpha,\mu$ is called dual variable.

maximize L about dual variable, minimize L about primal variable


Now, I define $P(w,b,\epsilon)$ as maximizing $\alpha,\mu$ of L.

$$P(w,b,\epsilon):= \max_{\alpha \geq 0, \mu \geq 0} L(w,b,\epsilon,\alpha,\mu)$$

I minimize P about primal variable.

$$\min_{w,b,\epsilon} P(w,b,\epsilon) = \min_{w,b,\epsilon}\max_{\alpha \geq 0, \mu \geq 0} L(w,b,\epsilon,\alpha,\mu)$$

Optimizing this problem is same as optimizing the main problem.
I will explain it.

I change $\min_{w,b,\epsilon} P(w,b,\epsilon)$ into

$$\min_{w,b,\epsilon} P(w,b,\epsilon) = \min_{w,b,\epsilon}\max_{\alpha \geq 0, \mu \geq 0} L(w,b,\epsilon,\alpha,\mu)$$
$$= \min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i + \max_{\alpha \geq 0,\mu \geq 0} \{-\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i \}$$

because, first item and second item is not relate $\alpha,\mu$.

The main problem is

$$\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$

$$~~s.t~~ \forall i \in N, -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \}\leq 0,~~~, \forall i \in N~ -\epsilon \leq 0$$


Now,
If $\exists ~i \in N ~~s.t.~~ -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} >  0$,  or $-\epsilon > 0$, We can not optimize $\min_{w,b,\epsilon} P(w,b,\epsilon)$, because We can increase $P(w,b,\epsilon)$ to $\infty$ by increase $\alpha,\mu$.

If $\forall ~i \in N, -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \}\leq 0$ and $~ -\epsilon \leq 0$ ,

$$\max_{\alpha \geq 0,\mu \geq 0} \{-\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i \} = 0$$

then, $$\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i + \max_{\alpha \geq 0,\mu \geq 0} \{-\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i \}$$
$$= \min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$

this is the main problem.

minimize L about primal variable, maximize L about dual variable.

Next I define $D(\alpha,\mu)$ as optimize primal variable.

$$D(\alpha,\mu) := \min_{w,b,\epsilon,\alpha,\mu} L(w,b,\epsilon,\alpha,\mu)$$

I miximize $D(\alpha,\mu)$ about $\alpha,\mu$.
$$\max_{\alpha,\mu} D(\alpha,\mu) = \max_{\alpha,\mu} \min_{w,b,\epsilon,\alpha,\mu} L(w,b,\epsilon,\alpha,\mu)$$

This problem is called the dual problem.

About $\min_{w,b,\epsilon,\alpha,\mu} L(w,b,\epsilon,\alpha,\mu)$,
Partial differential is

$$\frac{\partial L}{\partial w} = w - \sum_{i \in {1,2,..,n}} \alpha_i y_i x_i = 0$$
$$\frac{\partial L}{\partial b} = - \sum_{i \in {1,2,..,n}} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \epsilon} = C - \alpha_i - \mu_i = 0$$

then, L is
\begin{eqnarray*}
L &=& \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i -\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i\\
&=& \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i -\sum_{i \in {1,2,..,n}} \alpha_i y_i w^T \phi(x) + \alpha_i y_i b - \alpha_i + \alpha_i \epsilon_i - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i\\
&=& \frac{1}{2}||W||^2 - \sum_{i \in {1,2,..,n}} \alpha_i y_i w^T x_i - b \sum_{i \in {1,2,..,n}} \alpha_i y_i + \sum_{i \in {1,2,..,n}} \alpha_i + \sum_{i \in {1,2,..,n}} (C - \alpha_i - \mu_i) \epsilon_i
\end{eqnarray*}

I substitute partial differentials.
$$-\frac{1}{2} \sum_{i,j \in {1,2,..,n}} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j) + \sum_{i \in {1,2,..,n}} \alpha_i$$

Now,
\begin{eqnarray*}
C - \alpha_i - \mu_i &=& 0 \\
C - \alpha_i &=& \mu \geq 0\\
C - \alpha_i & \geq & 0
\end{eqnarray*}

I get this dual problem.

$$\max_{\alpha} -\frac{1}{2} \sum_{i,j \in {1,2,..,n}} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j) + \sum_{i \in {1,2,..,n}} \alpha_i$$
$$s.t. \sum_{i \in {1,2,..,n}} \alpha_i y_i = 0 ~~~ , 0 \leq \alpha_i \leq C$$

$$\min_{\alpha} \frac{1}{2} \sum_{i,j \in {1,2,..,n}} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j) - \sum_{i \in {1,2,..,n}} \alpha_i$$
$$s.t. \sum_{i \in {1,2,..,n}} \alpha_i y_i = 0 ~~~ , 0 \leq \alpha_i \leq C$$


Reference
https://www.amazon.co.jp/%E3%82%B5%E3%83%9D%E3%83%BC%E3%83%88%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E3%83%9E%E3%82%B7%E3%83%B3-%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%97%E3%83%AD%E3%83%95%E3%82%A7%E3%83%83%E3%82%B7%E3%83%A7%E3%83%8A%E3%83%AB%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA-%E7%AB%B9%E5%86%85-%E4%B8%80%E9%83%8E/dp/4061529064

コメント

このブログの人気の投稿

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

カーネルk-meansの実装

Introduction   English ver 今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。 ここのpdf を主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。 また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。 #  理論編書きました。K-means 理論編 概要 dataset   ちょっとだけ理論の説明  k-means    kernel k-means   Dataset   English ver 今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。 一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。 二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。   this page にデータセットを作ったコードを載せています。 ちょっとだけ理論の説明 k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かな...

Bayes' theorem

Introduction sorry, this page is Japanese only.   今回はベイズの定理について書こうと思います。 ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。 ベイズの定理 ベイズの定理とは 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率) 確率P(B):事象Aが起こる前の事象Bの確率(事前確率) とするとき以下が成り立つことを示しています。 $$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$ 例 例えば、次のように事象A、事象Bwo定義します。 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。) 確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。 確率P(A|B)が低い時を考えてみましょう。 つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。 ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。 つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuber...