スキップしてメイン コンテンツに移動

投稿

ラベル(グラフ理論)が付いた投稿を表示しています

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

ヒープ構造

Introduction English ver 今日はヒープ構造について書きます。ヒープ構造はデータ構造の一種です。ちょうど大学の自主ゼミグループのセミナー合宿に参加させてもらい、そこでグラフ理論を勉強したので、メモをしておこうと思います。   slide  はこんなのを使いました。 Overview データ構造 二分木 ヒープ 実装 ヒープソート データ構造 ヒープ構造の前に、データ構造について、説明します。データ構造とは、データを保存する手法であります。データ構造は、そのデータについてどのような操作を行いたいかによって、最適なものを選ぶことになります。 ヒープ構造はプライオリティキューと呼ばれれるデータ構造を表す方法です。プライオリティキューで行いたい操作は以下の二つです。 データの追加 最小値の抽出 二分木 まず、グラフを定義します。E と V は集合とし、 $e \in E$、つまりEの要素をedge(枝)と呼びます。また、$v \in V$、つまりVの要素をnodeと呼びます。 g:E->V×V をEからV × Vへの写像とします。この時、.(E,V,g)をグラフを言います。 例えば、次のようなものがあります。 丸いのがそれぞれのnodeで、矢印がedgeになります。 各edgeに対して、始点v1と始点v2を対応させるのが写像gの役目です。 根付き木とは次のような木のことです。 これはnode1からnodeが二つずつどんどん派生していっています。 特に、次のような木を 二分木 といいます。 特徴は、ノードが上からなおかつ左から敷き詰められています。一番上のノードを根といいます。また、例えば2を基準にすると、1は2の親、4,5は2の子、3は2の兄弟、8,9,10,11,12は葉と呼ばれます。 ヒープ ヒープ構造はプライオリティキューを二分木で表現したものです。プライオリティキューでやりたいことは次のことでした。 データの追加 最小値の抽出 . では、どのようにこの二つの操作を実現するのでしょうか。 初めにデータの追加について説明します。 1. 二分木の最後に追加す...

heap structure

Introduction 日本語 ver Today, I will write about heap structure. The heap structure is one of the data structure. My reason of studying heap structure is that I joined seminar of Ritsumeikan Univ. I used this  slide  in seminar of Ritsumeikan Univ. Overview data structure binary tree heap Implementation heap sort Data structure I will explain about data structure before explaining about heap. Data structure is how to keep data. Data structure is selected on the basis of operation which you want to.  Heap belong to data structure called priority queue. priority queue have purpose which  add data pick up minimum data (and remove)  Binary Tree Let, E and V are sets. The element $e \in E$ is called edge. The element $v \in V$ is called node. g:E->V×V is map to V × V from E. (E,V,g) is called graph. For example, The arrows are edge. The circles are node. This is expressed map. It is possible to go to node 3 from 1....

Pythonでグラフ理論

Introduction English ver 今日はnetworkxというpythonのモジュールについて書きます。 グラフ理論の定義などの情報は ここ の記事に書いてあります。 この記事ではグラフ理論の中身については扱いませんが、Pythonでのnetworkxというモジュールについてメモをしておきます。 Networkx Python3にはnetworkxはすでに入っています。 Python2の方はpipを使ってinstallしてください。コマンドラインで以下のコマンドを実行します。 pip install networkx ではNetworkxを使ってグラフを作っていきます。 初めにimportをしてインスタンスを作っていきます。 import networkx as nx import matplotlib.pyplot as plt G = nx.Graph() 次にグラフにノード(頂点)とエッジ(枝)を入れていきます。 G.add_node(1) # add Multiple nodes G.add_nodes_from([2,3,4]) G.add_edge(1,2) # add Multiple edges G.add_edges_from([(3,4),(1,2),(4,6)]) ではこのGのグラフを描画していきましょう。 以下のコードで描画できます。 nx.draw(G) plt.show() Networkxはたくさんの関数を持っています。 また、随時追記していきたいと思います。 Reference https://qiita.com/kzm4269/items/081ff2fdb8a6b0a6112f http://akiniwa.hatenablog.jp/entry/2013/05/12/012459

グラフ理論

Introduction sorry, this page is Japanese only. いよいよ私も三回生になり、グラフ理論の授業が始まりました。ということで、グラフ理論の基本的な定義を書いていこうと思います。 最後に説明する隣接行列については実装を行いましたので、以下の記事もよろしければご覧ください。 隣接行列の実装 グラフのイメージ グラフ理論のグラフとは高校数学で習う二次関数などとは違います。 例えば駅などを創造してください。各駅間に線路が通っていますね。このような、駅、線路の集まりのことをグラフといいます。次の絵で確認してもらえるとイメージしやすいかと思います。 このようなものをグラフといいます。グラフは二点間がどうつながっているかだけを保存し、実際の距離や位置関係は保存しません。 このような向きのない(各駅を行き来でき、一方通行ではない)グラフを無向グラフをいいます。反対に向きのある(一方通行しかできない)グラフを有向グラフといいます。 グラフの定義 グラフではある空でない集合E,Vを考えます。Eの要素をedge(辺)、Vの要素をvertex(頂点)といいます。 ここで以下のような写像を考えます。 $$g:E \rightarrow V \times V$$ この時(E,V,g)で定義される空でない空間のことをグラフといいます。 写像で捉えるグラフ 写像gというのは、Eの要素、つまり辺を対応する(始点、終点)というV×Vの集合の要素に送ります。gは写像ですので、写像の定義より、Eのどの要素の始点と終点が対応していることになります。つまり、辺がどこにもつながっていないということはあり得ません。反対にすべてのV×Vの要素がEの要素のどれかに対応しているのであればgは全射になります。 隣接行列 隣接行列とはどのvertexと、どのvertexがつながっているかを行列で表します。例を見るのが理解するのには早いと思うので、例を挙げて説明します。 上のグラフのイメージで出てきたグラフの例を考えましょう。隣接行列は以下のようになります。 $$ \[  adj = \left( \begin{array}{cccccc} 0 ...

隣接行列の実装

Introduction sorry, this page is Japanese only.   ここでは隣接行列の実装を行っていきます。Python3を使っています。OSはwindows10です。隣接行列の説明は以下の記事の下の方をご覧ください。 グラフ理論の基礎 実装例 扱うグラフ コマンドでの結果 Code defファイル import numpy as np class directed_Gragh(): def __init__(self,E,V,gragh_map): self.edge = E; self.vertex = V; self.map = gragh_map; def Adjacency_matrix(self): adjacency_matrix = np.zeros((self.vertex.shape[0],self.vertex.shape[0])) for ed in self.edge: P_ = self.map(ed) start = P_[0] end = P_[1] row = np.where(self.vertex == start) column = np.where(self.vertex == end) adjacency_matrix[row,column] = 1 adjacency_matrix[column,row] = 1 return adjacency_matrix mainファイル import numpy as np from Gragh_def import directed_Gragh def main(): vertex = np.array(['house','station','school','hospital']) edge = np.array([1,2,3,4...