スキップしてメイン コンテンツに移動

ヒープ構造

Introduction

今日はヒープ構造について書きます。ヒープ構造はデータ構造の一種です。ちょうど大学の自主ゼミグループのセミナー合宿に参加させてもらい、そこでグラフ理論を勉強したので、メモをしておこうと思います。

 slide はこんなのを使いました。


Overview

  • データ構造
  • 二分木
  • ヒープ
  • 実装
  • ヒープソート

データ構造
ヒープ構造の前に、データ構造について、説明します。データ構造とは、データを保存する手法であります。データ構造は、そのデータについてどのような操作を行いたいかによって、最適なものを選ぶことになります。

ヒープ構造はプライオリティキューと呼ばれれるデータ構造を表す方法です。プライオリティキューで行いたい操作は以下の二つです。
  1. データの追加
  2. 最小値の抽出

二分木
まず、グラフを定義します。E と V は集合とし、 $e \in E$、つまりEの要素をedge(枝)と呼びます。また、$v \in V$、つまりVの要素をnodeと呼びます。
g:E->V×V をEからV × Vへの写像とします。この時、.(E,V,g)をグラフを言います。

例えば、次のようなものがあります。


丸いのがそれぞれのnodeで、矢印がedgeになります。
各edgeに対して、始点v1と始点v2を対応させるのが写像gの役目です。


根付き木とは次のような木のことです。



これはnode1からnodeが二つずつどんどん派生していっています。

特に、次のような木を二分木といいます。



特徴は、ノードが上からなおかつ左から敷き詰められています。一番上のノードを根といいます。また、例えば2を基準にすると、1は2の親、4,5は2の子、3は2の兄弟、8,9,10,11,12は葉と呼ばれます。

ヒープ
ヒープ構造はプライオリティキューを二分木で表現したものです。プライオリティキューでやりたいことは次のことでした。
  1. データの追加
  2. 最小値の抽出
.
では、どのようにこの二つの操作を実現するのでしょうか。
初めにデータの追加について説明します。
1. 二分木の最後に追加するノードをくっつける
2.親と比べて、自分のほうが若かったら親と入れ替わる。

3. 2を繰り返して、自分より若い親がいないようにする

こうすることでヒープ構造を壊さずに値を加えることができます。

次に、データの抽出です。
1. Aを取り出す。
2. 根の部分に最後尾のノードをコピーする
 3. 最後尾のノードを削除する

4. 自分の子供のうち、小さいほうと自分を比べて子供のほうが若ければいれかえる。
5.4を自分より年寄りな子がなくなるまで繰り返す。

こうすることでヒープ構造を壊さずに最小値を抽出できる。
大事なのはこの操作の計算量はO(logN)であることです。

実装
ヒープ構造を壊さずにを実装するとき、配列かリストを使います。
子供のノードはの番号は2×親ノード番号+ 1、 2 ×親ノード番号+2になります。 2×親ノード番号+ 1は左側の子供です。 2 ×親ノード番号+2は右側の子供です。

このように、Aの子供はB,C、Bの子供はD,E...という風になっています。


heap構造の実装はこちらのgithubに公開しています。

このgifはヒープ構造を表現した配列に10この値を加えていったあと、10回最小値を取り出したときの配列の値です。

ヒープソート
ヒープソートとは、ヒープ構造から値を取り出すときO(lonN)で最小値を取り出せることを利用したソート方法です。ランダムな配列を一度ヒープ構造に突っ込んで、そのあと、最小値を取り出せば、小さい順になって出てくるということです。

このgifは、最初に移る配列を一旦、heap構造の配列に加えて、取り出していった時の配列の値です。


Reference
https://www.amazon.co.jp/%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0%E3%82%B3%E3%83%B3%E3%83%86%E3%82%B9%E3%83%88%E3%83%81%E3%83%A3%E3%83%AC%E3%83%B3%E3%82%B8%E3%83%96%E3%83%83%E3%82%AF-%E7%AC%AC2%E7%89%88-%EF%BD%9E%E5%95%8F%E9%A1%8C%E8%A7%A3%E6%B1%BA%E3%81%AE%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0%E6%B4%BB%E7%94%A8%E5%8A%9B%E3%81%A8%E3%82%B3%E3%83%BC%E3%83%87%E3%82%A3%E3%83%B3%E3%82%B0%E3%83%86%E3%82%AF%E3%83%8B%E3%83%83%E3%82%AF%E3%82%92%E9%8D%9B%E3%81%88%E3%82%8B%EF%BD%9E-%E7%A7%8B%E8%91%89%E6%8B%93%E5%93%89/dp/4839941068



コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

Kullback-Leibler divergence

Introduction sorry, this page is Japanese only.   今日がダイバージェンスについて書いていきます。 ちなみにエントロピーの知識を使うのでエントロピーの記事も見てあげてください。 エントロピーの記事はこちら Kullback-Leibler Divergence 二つの確率分布の平均エントロピーの差を表す値をKLダイバージェンスといいます。 式では次のように定義されます。 $$KL(P||Q) = \int_{-\infty}^{\infty} P(X) log \frac{P(X)}{Q(X)}$$ 離散の場合は $$KL(P||Q) = \sum_{i} P(X_i) log \frac{P(X_i)}{Q(X)}$$ なぜ二つの分布間の距離をこのように定義できるのでしょうか。 式の解釈 真の分布P(X)が存在するとします。しかし、有限のデータから真の分布P(X)を求めるのは難しいです。そこで、有限のデータから推定して得られた確率分布をQ(X)とします。では真の分布P(X)と推定した分布Q(X)はどれだけ違っているのでしょうか。 ここで登場するのがエントロピーです。エントロピーはその分布の不確実性を示す値でした。 エントロピーが高いほど不確かなことが起こるとゆうことです。 P(X)のエントロピーとは$-\int_{-\infty}^{\infty} logP(X)$でした。 では推定した確率分布Q(X)は確率分布P(X)に対してどれだけ不確実性を持っているのでしょうか。エントロピーとは情報量の期待値でした。確率分布Q(X)が持つ情報量は$-logQ(X)$です。この情報量を確率P(X)で期待値をとります。 式は以下のようになります。 $$-\int_{-\infty}^{\infty} P(X) logQ(X)$$ この値と真の分布のエントロピーとの差を二つの分布間の差として定義します。式では以下のようになります。 $$-\int_{-\infty}^{\infty} P(X) logQ(X) - (--\int_{-\infty}^{\infty} P(X) logP(X)))$$ これを式変形すると $$-\int_{-\infty}^...