スキップしてメイン コンテンツに移動

ヒープ構造

Introduction

今日はヒープ構造について書きます。ヒープ構造はデータ構造の一種です。ちょうど大学の自主ゼミグループのセミナー合宿に参加させてもらい、そこでグラフ理論を勉強したので、メモをしておこうと思います。

 slide はこんなのを使いました。


Overview

  • データ構造
  • 二分木
  • ヒープ
  • 実装
  • ヒープソート

データ構造
ヒープ構造の前に、データ構造について、説明します。データ構造とは、データを保存する手法であります。データ構造は、そのデータについてどのような操作を行いたいかによって、最適なものを選ぶことになります。

ヒープ構造はプライオリティキューと呼ばれれるデータ構造を表す方法です。プライオリティキューで行いたい操作は以下の二つです。
  1. データの追加
  2. 最小値の抽出

二分木
まず、グラフを定義します。E と V は集合とし、 $e \in E$、つまりEの要素をedge(枝)と呼びます。また、$v \in V$、つまりVの要素をnodeと呼びます。
g:E->V×V をEからV × Vへの写像とします。この時、.(E,V,g)をグラフを言います。

例えば、次のようなものがあります。


丸いのがそれぞれのnodeで、矢印がedgeになります。
各edgeに対して、始点v1と始点v2を対応させるのが写像gの役目です。


根付き木とは次のような木のことです。



これはnode1からnodeが二つずつどんどん派生していっています。

特に、次のような木を二分木といいます。



特徴は、ノードが上からなおかつ左から敷き詰められています。一番上のノードを根といいます。また、例えば2を基準にすると、1は2の親、4,5は2の子、3は2の兄弟、8,9,10,11,12は葉と呼ばれます。

ヒープ
ヒープ構造はプライオリティキューを二分木で表現したものです。プライオリティキューでやりたいことは次のことでした。
  1. データの追加
  2. 最小値の抽出
.
では、どのようにこの二つの操作を実現するのでしょうか。
初めにデータの追加について説明します。
1. 二分木の最後に追加するノードをくっつける
2.親と比べて、自分のほうが若かったら親と入れ替わる。

3. 2を繰り返して、自分より若い親がいないようにする

こうすることでヒープ構造を壊さずに値を加えることができます。

次に、データの抽出です。
1. Aを取り出す。
2. 根の部分に最後尾のノードをコピーする
 3. 最後尾のノードを削除する

4. 自分の子供のうち、小さいほうと自分を比べて子供のほうが若ければいれかえる。
5.4を自分より年寄りな子がなくなるまで繰り返す。

こうすることでヒープ構造を壊さずに最小値を抽出できる。
大事なのはこの操作の計算量はO(logN)であることです。

実装
ヒープ構造を壊さずにを実装するとき、配列かリストを使います。
子供のノードはの番号は2×親ノード番号+ 1、 2 ×親ノード番号+2になります。 2×親ノード番号+ 1は左側の子供です。 2 ×親ノード番号+2は右側の子供です。

このように、Aの子供はB,C、Bの子供はD,E...という風になっています。


heap構造の実装はこちらのgithubに公開しています。

このgifはヒープ構造を表現した配列に10この値を加えていったあと、10回最小値を取り出したときの配列の値です。

ヒープソート
ヒープソートとは、ヒープ構造から値を取り出すときO(lonN)で最小値を取り出せることを利用したソート方法です。ランダムな配列を一度ヒープ構造に突っ込んで、そのあと、最小値を取り出せば、小さい順になって出てくるということです。

このgifは、最初に移る配列を一旦、heap構造の配列に加えて、取り出していった時の配列の値です。


Reference
https://www.amazon.co.jp/%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0%E3%82%B3%E3%83%B3%E3%83%86%E3%82%B9%E3%83%88%E3%83%81%E3%83%A3%E3%83%AC%E3%83%B3%E3%82%B8%E3%83%96%E3%83%83%E3%82%AF-%E7%AC%AC2%E7%89%88-%EF%BD%9E%E5%95%8F%E9%A1%8C%E8%A7%A3%E6%B1%BA%E3%81%AE%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0%E6%B4%BB%E7%94%A8%E5%8A%9B%E3%81%A8%E3%82%B3%E3%83%BC%E3%83%87%E3%82%A3%E3%83%B3%E3%82%B0%E3%83%86%E3%82%AF%E3%83%8B%E3%83%83%E3%82%AF%E3%82%92%E9%8D%9B%E3%81%88%E3%82%8B%EF%BD%9E-%E7%A7%8B%E8%91%89%E6%8B%93%E5%93%89/dp/4839941068



コメント

このブログの人気の投稿

グラフ理論

Introduction sorry, this page is Japanese only. いよいよ私も三回生になり、グラフ理論の授業が始まりました。ということで、グラフ理論の基本的な定義を書いていこうと思います。 最後に説明する隣接行列については実装を行いましたので、以下の記事もよろしければご覧ください。 隣接行列の実装 グラフのイメージ グラフ理論のグラフとは高校数学で習う二次関数などとは違います。 例えば駅などを創造してください。各駅間に線路が通っていますね。このような、駅、線路の集まりのことをグラフといいます。次の絵で確認してもらえるとイメージしやすいかと思います。 このようなものをグラフといいます。グラフは二点間がどうつながっているかだけを保存し、実際の距離や位置関係は保存しません。 このような向きのない(各駅を行き来でき、一方通行ではない)グラフを無向グラフをいいます。反対に向きのある(一方通行しかできない)グラフを有向グラフといいます。 グラフの定義 グラフではある空でない集合E,Vを考えます。Eの要素をedge(辺)、Vの要素をvertex(頂点)といいます。 ここで以下のような写像を考えます。 $$g:E \rightarrow V \times V$$ この時(E,V,g)で定義される空でない空間のことをグラフといいます。 写像で捉えるグラフ 写像gというのは、Eの要素、つまり辺を対応する(始点、終点)というV×Vの集合の要素に送ります。gは写像ですので、写像の定義より、Eのどの要素の始点と終点が対応していることになります。つまり、辺がどこにもつながっていないということはあり得ません。反対にすべてのV×Vの要素がEの要素のどれかに対応しているのであればgは全射になります。 隣接行列 隣接行列とはどのvertexと、どのvertexがつながっているかを行列で表します。例を見るのが理解するのには早いと思うので、例を挙げて説明します。 上のグラフのイメージで出てきたグラフの例を考えましょう。隣接行列は以下のようになります。 $$ \[  adj = \left( \begin{array}{cccccc} 0 &

Entropy

Introduction sorry, this page is Japanese only.   今日はエントロピーについて書こうと思います。これは確率論や統計学で死ぬほど大事なKLダイバージェンスといものを理解するために必要な知識です。 この記事ではエントロピーについてしか書きませんが、今度KLダイバージェンスについても書こうと思います。 KLダイバージェンスの記事はこちら Entropy 直観的な話 ある事象、「例えば明日大学の講義にX分遅刻する」という事象を考えます。 この事象に対する確率がP(X)が与えられているとしましょう。P(1)は一分遅刻する確率です。この時確率分布P(X)が持つ情報量はどれだけのものかとうことを考えたいとします。 明日の講義はテストを受けるとします。そのテストを受けないと単位を落としてしまします。しかし、テスト前日はすごく寝不足としましょう。遅刻する確率が99パーセントとわかった時、ほとんどどうあがいても遅刻するのであれば単位を落とすのはほぼ確実といえます。 よって前日に徹夜で勉強するよりも、睡眠不足を解消するために寝る方がよっぽど効率的であることがわかります。しかし、遅刻をする確率が50パーセントとわかった時、前日にテスト勉強をすればよいのか、せずに睡眠をとればよいのかわかりません。このように、確率が偏っているほど何が起こるか予測しやすく、対策を立てやすいのです。遅刻する確率が99パーセントとわかる時は遅刻する確率が50パーセントとわかった時に比べて圧倒的に多いはずです。 確率P(X)に対してこの情報量のことをP(X)の 自己エントロピー といいます。 そして、自己エントロピーの期待値のことを 平均エントロピー といいます。 立式 性質 ではこの情報量を数式で表していきましょう。まず自己エントロピーには大事な性質が二つあります。それが 互いに独立な確率変数の自己エントロピーはそれぞれの情報量の和で表される。 自己エントロピーは減少関数である。 の二つです。 自己エントロピーの加法性 互いに独立な確率変数の情報慮はそれぞれの情報量の和でなければいけません。例えば「明日の講義がY分早く終わる」という事象を考えます。この確率変数Yはあなたが何分講義に遅刻しようが

二次元空間の直線

Introduction English ver 今日は、次の定理を証明します。 二次元空間の直線は次のように表せる \[\{x|<x,v> = 0\}\] ただし、vは直線に直行し、ゼロでないベクトルとします。 証明 \[\forall k \in \{x|<x,v> = 0\},\] \[<k,v> = 0\] k と vは二次元空間のベクトルなので、それぞれのベクトルは次のように表せます。 \[k = (k_1,k_2)\] \[v = (v_1,v_2)\] よって \(<k,v>=k_1v_1 + k_2v_2=0\) 方程式を\(k_2\)について解くと \[k_2 = -\frac{v_1}{v_2} k_1\] これはまさしく、傾き\(-\frac{v_1}{v_2}\)の直線です。 Q.E.D