スキップしてメイン コンテンツに移動

ヒープ構造

Introduction

今日はヒープ構造について書きます。ヒープ構造はデータ構造の一種です。ちょうど大学の自主ゼミグループのセミナー合宿に参加させてもらい、そこでグラフ理論を勉強したので、メモをしておこうと思います。

 slide はこんなのを使いました。


Overview

  • データ構造
  • 二分木
  • ヒープ
  • 実装
  • ヒープソート

データ構造
ヒープ構造の前に、データ構造について、説明します。データ構造とは、データを保存する手法であります。データ構造は、そのデータについてどのような操作を行いたいかによって、最適なものを選ぶことになります。

ヒープ構造はプライオリティキューと呼ばれれるデータ構造を表す方法です。プライオリティキューで行いたい操作は以下の二つです。
  1. データの追加
  2. 最小値の抽出

二分木
まず、グラフを定義します。E と V は集合とし、 $e \in E$、つまりEの要素をedge(枝)と呼びます。また、$v \in V$、つまりVの要素をnodeと呼びます。
g:E->V×V をEからV × Vへの写像とします。この時、.(E,V,g)をグラフを言います。

例えば、次のようなものがあります。


丸いのがそれぞれのnodeで、矢印がedgeになります。
各edgeに対して、始点v1と始点v2を対応させるのが写像gの役目です。


根付き木とは次のような木のことです。



これはnode1からnodeが二つずつどんどん派生していっています。

特に、次のような木を二分木といいます。



特徴は、ノードが上からなおかつ左から敷き詰められています。一番上のノードを根といいます。また、例えば2を基準にすると、1は2の親、4,5は2の子、3は2の兄弟、8,9,10,11,12は葉と呼ばれます。

ヒープ
ヒープ構造はプライオリティキューを二分木で表現したものです。プライオリティキューでやりたいことは次のことでした。
  1. データの追加
  2. 最小値の抽出
.
では、どのようにこの二つの操作を実現するのでしょうか。
初めにデータの追加について説明します。
1. 二分木の最後に追加するノードをくっつける
2.親と比べて、自分のほうが若かったら親と入れ替わる。

3. 2を繰り返して、自分より若い親がいないようにする

こうすることでヒープ構造を壊さずに値を加えることができます。

次に、データの抽出です。
1. Aを取り出す。
2. 根の部分に最後尾のノードをコピーする
 3. 最後尾のノードを削除する

4. 自分の子供のうち、小さいほうと自分を比べて子供のほうが若ければいれかえる。
5.4を自分より年寄りな子がなくなるまで繰り返す。

こうすることでヒープ構造を壊さずに最小値を抽出できる。
大事なのはこの操作の計算量はO(logN)であることです。

実装
ヒープ構造を壊さずにを実装するとき、配列かリストを使います。
子供のノードはの番号は2×親ノード番号+ 1、 2 ×親ノード番号+2になります。 2×親ノード番号+ 1は左側の子供です。 2 ×親ノード番号+2は右側の子供です。

このように、Aの子供はB,C、Bの子供はD,E...という風になっています。


heap構造の実装はこちらのgithubに公開しています。

このgifはヒープ構造を表現した配列に10この値を加えていったあと、10回最小値を取り出したときの配列の値です。

ヒープソート
ヒープソートとは、ヒープ構造から値を取り出すときO(lonN)で最小値を取り出せることを利用したソート方法です。ランダムな配列を一度ヒープ構造に突っ込んで、そのあと、最小値を取り出せば、小さい順になって出てくるということです。

このgifは、最初に移る配列を一旦、heap構造の配列に加えて、取り出していった時の配列の値です。


Reference
https://www.amazon.co.jp/%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0%E3%82%B3%E3%83%B3%E3%83%86%E3%82%B9%E3%83%88%E3%83%81%E3%83%A3%E3%83%AC%E3%83%B3%E3%82%B8%E3%83%96%E3%83%83%E3%82%AF-%E7%AC%AC2%E7%89%88-%EF%BD%9E%E5%95%8F%E9%A1%8C%E8%A7%A3%E6%B1%BA%E3%81%AE%E3%82%A2%E3%83%AB%E3%82%B4%E3%83%AA%E3%82%BA%E3%83%A0%E6%B4%BB%E7%94%A8%E5%8A%9B%E3%81%A8%E3%82%B3%E3%83%BC%E3%83%87%E3%82%A3%E3%83%B3%E3%82%B0%E3%83%86%E3%82%AF%E3%83%8B%E3%83%83%E3%82%AF%E3%82%92%E9%8D%9B%E3%81%88%E3%82%8B%EF%BD%9E-%E7%A7%8B%E8%91%89%E6%8B%93%E5%93%89/dp/4839941068



コメント

このブログの人気の投稿

カーネルk-meansの実装

Introduction   English ver 今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。 ここのpdf を主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。 また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。 #  理論編書きました。K-means 理論編 概要 dataset   ちょっとだけ理論の説明  k-means    kernel k-means   Dataset   English ver 今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。 一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。 二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。   this page にデータセットを作ったコードを載せています。 ちょっとだけ理論の説明 k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かな...

Bayes' theorem

Introduction sorry, this page is Japanese only.   今回はベイズの定理について書こうと思います。 ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。 ベイズの定理 ベイズの定理とは 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率) 確率P(B):事象Aが起こる前の事象Bの確率(事前確率) とするとき以下が成り立つことを示しています。 $$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$ 例 例えば、次のように事象A、事象Bwo定義します。 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。) 確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。 確率P(A|B)が低い時を考えてみましょう。 つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。 ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。 つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuber...

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...