スキップしてメイン コンテンツに移動

投稿

ラベル(Statistics)が付いた投稿を表示しています

MAP estimation

Introduction 日本語 ver Today, I will explain MAP estimation(maximum a posteriori estimation). MAP estimation is used Bayes' thorem. If sample data is few, we can not belive value by Maximum likelihood estimation. Then, MAP estimation is enable to include our sense.  Overveiw Bayes' theorem MAP estimation Conjugate distribution Bayes' theorem  Bayes' theorem is $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ $P(A|B)$ is Probability when B occur. Please go on  http://takutori.blogspot.com/2018/04/bayes-theorem.html to know detail of Bayes' theorem. Map estimation Map estimation is used Bayes' theorem. Map estimation estimate parameter of population by maximuzing posterior probability. Now, suppoce we get data $x_1,x_2,...,x_n$ from population which have parameter $\theta$. Then, we want to $P(\theta|x_1,x_2,...,x_n)$. Here, we use Bayes' theorem. $$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}...

Maximum likelihood extimation

Introduction 日本語 ver Today, I will write about the Maximum likelihood estimation. This is basically the Statistics estimation. I want to explain an example of Maximum likelihood estimation. Firstly, I will explain likelihood. Secondly, I will likelihood function. Thirdly, I will explain the Maximum likelihood estimation. Overview likelihood Maximum likelihood estimation the problem of Maximum likelihood estimation likelihood Let we get the observation data by a precondition. When we estimate precondition by an observation data, the likelihood is a plausible value which indicated that its estimation is correct. Maybe, you can not understand this meaning. Also, I could not understand. I give you an example of likelihood. I throw a coin. this coin land heads up by probability P, and lands head on the reverse by probability 1-P. For example, when I throw 100 times a coin, all trial is head. Then, we estimate that probability P is 1.0. If ...

Mahalanobis' Distance

Introduction 日本語 ver Today, I will write about Mahalanobis’ Distance. Mahalanobis’ Distance is used when each dimension has a relationship. This distance is fulfilled definition of distance. Mahalanobis’ Distance is important for Statics. If you interested in Statics or Machine Learning, Please see my this blog. Overview definition of distance deficition of Mahalanobis’ Distance image of Mahalanobis’ Distance definition of distance if d is distance function, d if fulfilled following condtion. \(d:X \times X -> R\) \(d(x,y) \geq 0\) \(d(x,y) = 0 \leftrightarrow x = y\) \(d(x,y) = d(y,x)\) \(d(x,z) \leq d(x,y) + d(y,z)\) Mahalanobis’ Distance Mahalanobis’ Distance is distance function. Mahalanobis’ Distance is defined by following from \[D_{M}(x) = \sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)}\] here, \(\mu\) is mean vector \[\mu = (\mu_1,\mu_2,....,\mu_n)\] and, \(\Sigma\) is variance-convariance matrix. Mahalanobis’ Distance between x and y is \begin{eqnarray...

Bayes' theorem

Introduction sorry, this page is Japanese only.   今回はベイズの定理について書こうと思います。 ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。 ベイズの定理 ベイズの定理とは 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率) 確率P(B):事象Aが起こる前の事象Bの確率(事前確率) とするとき以下が成り立つことを示しています。 $$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$ 例 例えば、次のように事象A、事象Bwo定義します。 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。) 確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。 確率P(A|B)が低い時を考えてみましょう。 つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。 ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。 つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuber...