Processing math: 11%
スキップしてメイン コンテンツに移動

Bayes' theorem

Introduction
sorry, this page is Japanese only. 
今回はベイズの定理について書こうと思います。
ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。

ベイズの定理
ベイズの定理とは

  • 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率)
  • 確率P(B):事象Aが起こる前の事象Bの確率(事前確率)
とするとき以下が成り立つことを示しています。

P(B|A) = \frac{P(A|B) P(B)}{P(A)}


例えば、次のように事象A、事象Bwo定義します。

  • 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える
  • 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する


この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。)

確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。

確率P(A|B)が低い時を考えてみましょう。
つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。

ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。

つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuberが50万円以上使う動画を投稿すr確率がかなり、低い。このどちらかが考えられます。P(A)が高いとき、そのYouruberが単に大人気なのであって、動画の再生回数が100万回を超える原因が50万円以上お金を使ったことにあるとは限りません。また、P(B)が低いとき、つまり、50万円以上お金を使った動画が少ないときは、たまたま、100万円を超えただけで、本当の原因が50万円以上使ったことにあるとは限りません。

このようにベイズの定理では、結果から原因を推定する力があります。

式の導出
最後にベイズの定理の式を導出しようと思います。まず条件付き確率の式を確認します。ある事象Bが起こった時、事象Aが起こっている確率(条件付き確率)は
P(A|B) = \frac{P(A,B)}{P(B)}
ただし、P(A,B)はAとBの同時確率を表します。
この式をベイズの定理の式の右辺に代入します。
\frac{P(A|B)P(B)}{P(A)} = \frac{\frac{(P(A,B)}{P(B)} P(B)}{P(A)} = P(B|A)

References
https://ja.wikipedia.org/wiki/ベイズの定理





コメント

このブログの人気の投稿

カーネルk-meansの実装

Introduction   English ver 今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。 ここのpdf を主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。 また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。 #  理論編書きました。K-means 理論編 概要 dataset   ちょっとだけ理論の説明  k-means    kernel k-means   Dataset   English ver 今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。 一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。 二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。   this page にデータセットを作ったコードを載せています。 ちょっとだけ理論の説明 k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かな...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードにd=\inftyを割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードにd=\inftyを割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムではO(log(|V|^2))という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

ヘッセ行列

Introduction English ver 今日は、ヘッセ行列を用いたテイラー展開について書こうと思います。 これは最適化を勉強するにあたって、とても大事になってくるので自分でまとめて残しておくことにしました。とくに、機械学習では最適化を必ず行うため、このブログのタイトルにもマッチした内容だと思います。 . 概要 ヘッセ行列の定義 ベクトルを用いたテイラー展開 関数の最適性 ヘッセ行列の定義 仮定 f は次のような条件を満たす関数です。. f はn次元ベクトルから実数値を出力します。 このベクトルは次のように表せます。 x = [x_1,x_2,,,,x_n] \forall x_i , i \in {1,2,,,n}, f は二回偏微分可能です。 定義 ヘッセ行列は \frac{\partial^2}{\partial x_i \partial x_j}を (i,j)要素に持ちます。 よってヘッセ行列は次のように表せます。 \[ H(f) = \left( \begin{array}{cccc} \frac{\partial^ 2}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & &\ldots \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^ 2 f}{\partial x_1 \partial x_2} & \frac{\partial^ 2 f}{\partial x_2^ 2} & \ldots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \ldo...