スキップしてメイン コンテンツに移動

ヘッセ行列

Introduction


今日は、ヘッセ行列を用いたテイラー展開について書こうと思います。
これは最適化を勉強するにあたって、とても大事になってくるので自分でまとめて残しておくことにしました。とくに、機械学習では最適化を必ず行うため、このブログのタイトルにもマッチした内容だと思います。
.

概要

  • ヘッセ行列の定義
  • ベクトルを用いたテイラー展開
  • 関数の最適性

ヘッセ行列の定義

仮定

f は次のような条件を満たす関数です。.
  • f はn次元ベクトルから実数値を出力します。
    このベクトルは次のように表せます。
    \[x = [x_1,x_2,,,,x_n]\]
  • \(\forall x_i , i \in {1,2,,,n}\), f は二回偏微分可能です。

定義

ヘッセ行列は \(\frac{\partial^2}{\partial x_i \partial x_j}を (i,j)要素に持ちます。\)
よってヘッセ行列は次のように表せます。
\[ H(f) = \left( \begin{array}{cccc} \frac{\partial^ 2}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & &\ldots \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^ 2 f}{\partial x_1 \partial x_2} & \frac{\partial^ 2 f}{\partial x_2^ 2} & \ldots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \ldots & \frac{\partial^2 f}{\partial x_n^2} \\ \end{array} \right) \]

ベクトルを用いたテイラー展開

テイラー展開を二次の項まで行った式を与えます。
\[f(a+h) = f(a) + \nabla f(a) h + \frac{1}{2} h^T \nabla f(a) h + R_3\]
ただし、 \(H=\nabla ^2 f\) はヘッセ行列です。
大事なのは二次の項までで止めていることです。理由は最適化できるようにです。

関数の最適性

定置性

  • \(n \times n\)行列A が 正定置
    \(\forall x \in\)n次元ベクトル空間、\(z^T A z > 0\)
  • \(n \times n\)行列A が 負定置
    \(\forall x \in\)n次元ベクトル空間、\(z^T A z < 0\)
  • \(n \times n\)行列A が 半正定置
    \(\forall x \in\)n次元ベクトル空間、\(z^T A z => 0\)
  • \(n \times n\)行列A が 半不定値
    \(\forall x \in\)n次元ベクトル空間、\(z^T A z <= 0\)
\(z^T A z\) は二次形式と呼ばれています。

最適性

もちろん上記で書いた二次の項までのテイラー展開の式は二次形式を含みます。
よって関数の最適性は次のように考えられます。
  • H(a)(ヘッセ行列) が正定置\(\implies\)f(a) は極小値.
  • H(a)(ヘッセ行列) が負定置\(\implies\) f(a) は極大値

Reference

https://ja.wikipedia.org/wiki/%E3%83%98%E3%83%83%E3%82%BB%E8%A1%8C%E5%88%97
http://www2.kaiyodai.ac.jp/~takenawa/optimization/resume10-1.pdf
http://www.dais.is.tohoku.ac.jp/~shioura/teaching/mp04/mp04-8.pdf
http://tau.doshisha.ac.jp/lectures/2008.calculus-II/html.dir/node43.html

コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...

最尤推定

Introduction English ver 今日は最尤推定について加工と思います。これは統計的推定でよく使われる手法です。最尤推定の例も書こうと思います。初めに尤度の説明をし、そのあとで最尤推定の説明をします。 概要 尤度 最尤推定 最尤推定の問題点 尤度 前提条件から得られる観察データを考えます。この時、えられた観測データに対して前提条件が尤もらしい条件であるかの値を尤度といいます。 なにをゆっているのかわからない人がほとんどだと思います。。。 尤度の例を扱っていきます。 コインを投げることを考えます。このコインは確率Pで表、確率1-Pで裏を出すコインだとします。 例えば、100回コインを投げたとき、全て表だったとします。この時このコインが表が出る確率はかなり1に近いことが予想されます。 ではもし、表が出る確率PがP=0.5だとします。この時、表が100回連続で出る確率は$0.5^{100} = 7.88860e-31$になります。あり得ない確率ですね。これがP=0.5としたときのもっともらしさです。つまり、あまり現実的ではないということです。 もしP=0.99とするとき、100回とも表が出る確率は$0.99^{100} = 0.3666....$となります。つまり、P=0.99としたときの尤度は0.36くらいということです。よって、P=0.5よりかは現実見があることになります。まだまだ低い数字ではありますが。 観測データである、100回表が出るという事象を固定したとき、尤度はPを変数としたP(100回表|P)を尤度関数と呼びます。この関数の値を尤度と呼びます。 尤度が高いほうが尤もらしい値、つまり理にかなっているなと感じることができる値ということになります。 例えば、先ほどの例でゆうと、 P=0.5としたときの尤度は7.88860e-31でした。P=0.99としたときの尤度は0.3666でした。よってP=0.5より、P=0.99のほうが尤もらしい自然な値ということになります。 最尤推定 最尤推定とは得られた観測データからデータが依存している分布のパラメーターを推測するための手法です。 最尤推定では尤度を最大化して、最も尤もらしいパラメーターを求めます。 確率密度関数...

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...