Introduction
今日はテイラー展開について紹介します。ここでは、一変数関数だけでなく、多変数関数のテイラー展開も紹介します。
一変数関数のテイラー展開
f(X) は区間(a,b)で連続であり、また、n回微分可能とします。すると、f(x) は以下のように表せます。
\[\exists c ~~s.t~~ f(b) = \sum_{k=0}^{n-1} f^{(k)}(a)\frac{(b-a)^k}{k!} + f^{(n)}(c) \frac{(b-a)^n}{n!}, c \in (a,b)\]
このf(x)を多項式で表したものをテイラー展開といいます。
最後の項は、剰余項と呼ばれます。
多変数関数のテイラー展開
多変数関数のテイラー展開はかなり複雑な形をしています。fは多変数関数とします。
さらに、m回微分可能な連続関数とします。
この時、 \(f(x_1+h_1,x_2+h_2,.....,x_n+h_n)\) は次のように表せます。
\[\exists \theta ~~s.t~~\]
\[f(x_1+h_1,x_2+h_2,...,x_n+h_n)=f(x_1,x_2,...,x_n) + \]
\[\sum_{m=0}^{n-1} \frac{1}{m-1} \sum_{k_1=1}^{n} \sum{k_2=1}^{n} ... \sum{k_{m-1}=1}^{n} \frac{\partial^{m-1} f}{\partial x_{k_1} \partial x_{k_2} .... \partial x_{k_{m-1}} }(x_1,x_2,..,x_n)h_{k_1}h_{k_2} ..... h_{k_m-1} \]
\[+ \frac{1}{m} \sum_{k_1=1}^{n} \sum_{k_2=1}^{n} ... \sum_{k_m=1}^{n} \frac{\partial^{m} f}{\partial x_{k_1} \partial x_{k_2} ... \partial x_{k_m} }(x_1 + \theta h_1, x_2 + \theta h_2,...., x_n + \theta h_n) h_k{k_1}h_{k_2}....h_{k_n}\]
最後の項は一変数の時と同様に剰余項と呼ばれます。
Proof
ここでは、一変数のテイラー展開の証明をします・この証明にはロルの定理を用いています。ロルの定理については以下の投稿を参考にしてください。
ロルの定理の投稿はこちら
f(x)を区間(a,b)で連続で、n回微分可能な関数とします。
この定理の証明は次を示すことで達成されます。
\[f(b) = \sum_{k=}^{n-1} f^{(k)} (a) \frac{(b-a)^k}{k!} + A \frac{(b-a)^n}{n!}\]
新しく、次のような関数を定義します。
\[g(x) = f(b) - \sum_{k=0}^{n-1} f^{(k)}(x) \frac{(b-a)^k}{k!} - A \frac{(b-x)^n}{n!}\]
g(x)は次のことを満たすことがすぐにわかります。
- g(a) = 0
- g(b) = 0
\[\exists c \in (a,b) ~~s.t~~ g'(c) = 0\]
\[\begin{eqnarray*} g'(x) &=& - \sum_{k=0} ^{n-1} f^{(k+1)} (x) \frac{(b-x)^k}{k!} + \sum_{k=1}^{n-1} f^{(k)} (x) \frac{(b-x)^{k-1}}{(k-1)!} + A \frac{(b-x)^{n-1}}{(n-1)!} \\ &=& -\sum_{k=1}^{n} f^{(k)} (x) \frac{(b-x)^{n-1}}{(k-1)!} + \sum_{k=1}^{n-1} f^{(k)} (x) \frac{(b-x)^{k-1}}{(k-1)!} + A \frac{(b-x)^{n-1}}{(n-1)!}\\ &=& -f^n (x) \frac{(b-x)^{n-1}}{(n-1)!} + A \frac{(b-x)^{n-1}}{(n-1)!} \end{eqnarray*}\]
cをxに代入することで
\[g'(c) = \frac{(b-x)^{n-1}}{(n-1)!} (A - f^{(n)}(x))\]
\[A = f^{(n)}(x)\]
Q.E.D
Reference
https://mathtrain.jp/taylortheorem
http://www.ne.jp/asahi/search-center/internationalrelation/mathWeb/Differentiation/TheoremsDffrntlNvarFnctn/TaylorTheorem.htm
コメント
コメントを投稿