スキップしてメイン コンテンツに移動

テイラー展開

Introduction

今日はテイラー展開について紹介します。
ここでは、一変数関数だけでなく、多変数関数のテイラー展開も紹介します。

一変数関数のテイラー展開

f(X) は区間(a,b)で連続であり、また、n回微分可能とします。
すると、f(x) は以下のように表せます。
\[\exists c ~~s.t~~ f(b) = \sum_{k=0}^{n-1} f^{(k)}(a)\frac{(b-a)^k}{k!} + f^{(n)}(c) \frac{(b-a)^n}{n!}, c \in (a,b)\]
このf(x)を多項式で表したものをテイラー展開といいます。
最後の項は、剰余項と呼ばれます。

多変数関数のテイラー展開

多変数関数のテイラー展開はかなり複雑な形をしています。
fは多変数関数とします。
さらに、m回微分可能な連続関数とします。
この時、 \(f(x_1+h_1,x_2+h_2,.....,x_n+h_n)\) は次のように表せます。
\[\exists \theta ~~s.t~~\]
\[f(x_1+h_1,x_2+h_2,...,x_n+h_n)=f(x_1,x_2,...,x_n) + \]
\[\sum_{m=0}^{n-1} \frac{1}{m-1} \sum_{k_1=1}^{n} \sum{k_2=1}^{n} ... \sum{k_{m-1}=1}^{n} \frac{\partial^{m-1} f}{\partial x_{k_1} \partial x_{k_2} .... \partial x_{k_{m-1}} }(x_1,x_2,..,x_n)h_{k_1}h_{k_2} ..... h_{k_m-1} \]
\[+ \frac{1}{m} \sum_{k_1=1}^{n} \sum_{k_2=1}^{n} ... \sum_{k_m=1}^{n} \frac{\partial^{m} f}{\partial x_{k_1} \partial x_{k_2} ... \partial x_{k_m} }(x_1 + \theta h_1, x_2 + \theta h_2,...., x_n + \theta h_n) h_k{k_1}h_{k_2}....h_{k_n}\]
最後の項は一変数の時と同様に剰余項と呼ばれます。

Proof

ここでは、一変数のテイラー展開の証明をします・
この証明にはロルの定理を用いています。ロルの定理については以下の投稿を参考にしてください。

ロルの定理の投稿はこちら

f(x)を区間(a,b)で連続で、n回微分可能な関数とします。
この定理の証明は次を示すことで達成されます。
\[f(b) = \sum_{k=}^{n-1} f^{(k)} (a) \frac{(b-a)^k}{k!} + A \frac{(b-a)^n}{n!}\]
新しく、次のような関数を定義します。
\[g(x) = f(b) - \sum_{k=0}^{n-1} f^{(k)}(x) \frac{(b-a)^k}{k!} - A \frac{(b-x)^n}{n!}\]
g(x)は次のことを満たすことがすぐにわかります。
  • g(a) = 0
  • g(b) = 0
よって、ロルの定理より、
\[\exists c \in (a,b) ~~s.t~~ g'(c) = 0\]
\[\begin{eqnarray*} g'(x) &=& - \sum_{k=0} ^{n-1} f^{(k+1)} (x) \frac{(b-x)^k}{k!} + \sum_{k=1}^{n-1} f^{(k)} (x) \frac{(b-x)^{k-1}}{(k-1)!} + A \frac{(b-x)^{n-1}}{(n-1)!} \\ &=& -\sum_{k=1}^{n} f^{(k)} (x) \frac{(b-x)^{n-1}}{(k-1)!} + \sum_{k=1}^{n-1} f^{(k)} (x) \frac{(b-x)^{k-1}}{(k-1)!} + A \frac{(b-x)^{n-1}}{(n-1)!}\\ &=& -f^n (x) \frac{(b-x)^{n-1}}{(n-1)!} + A \frac{(b-x)^{n-1}}{(n-1)!} \end{eqnarray*}\]
cをxに代入することで
\[g'(c) = \frac{(b-x)^{n-1}}{(n-1)!} (A - f^{(n)}(x))\]
\[A = f^{(n)}(x)\]
Q.E.D

Reference
https://mathtrain.jp/taylortheorem
http://www.ne.jp/asahi/search-center/internationalrelation/mathWeb/Differentiation/TheoremsDffrntlNvarFnctn/TaylorTheorem.htm

コメント

このブログの人気の投稿

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...