Processing math: 5%
スキップしてメイン コンテンツに移動

ロジスティック回帰の実装

Introduction

今日はロジスティック回帰の実装を行いました。
初めに、僕のComputerはosはwindowsです。実装はPython3で行います。
最適化にはIRLSを用いています。
ロジスティック回帰の理論偏にロジスティック回帰の詳しい理論や説明を書いています。
ロジスティック回帰の理論編

概要

  • 使うデータ集合について
  • Pythonでのコードを紹介
  • コマンドラインでの実行結果

Dataset

データセットはこちらを使います。
dataset
このデータセットには住宅街のデータが入っています。
Python3のPandas.DataFrameでの表示を貼っておきます。
enter image description here
上から五行目までを貼っています。
もし、その家に住人がいるのであれば、Occupancyには1が入っています。
反対に、その家に住人がいるのであれば、Ouucpancyには0が入ります。
このデータセットは約8000個のサンプルが入ったトレーニング用データと、約2000個のサンプルが入ったテスト用のデータがあります。
しかし、今回はトレーニング用に100個、テスト用に100個のデータを使います。僕のcomputerがプログラミング用ではないためです。。。
すいません。。。

CODE

このコードはとても長いので、僕のGithubのページに乗せてあるものを見てください。。
githubのページ
ロジスティック回帰(def file)
ロジスティック回帰(main file)
mainファイルには、以下のようなコードが入っているファイルです。コマンドラインで入力するファイルになります。
if __name__ == '__mian__'
defファイルには様々な関数が入っています。クラスも使われています。Pythonのクラスについてはまた、機会があれば書きたいと思います。

いざ、実行!

w を推定します…
enter image description here
wが更新されるごとのクロスエントロピー誤差関数の様子をplotしておきます。
enter image description here
scatterplot でクロスエントロピー誤差関数をplotした画像です。
enter image description here
うまく減少しているのがわかります。
最適化は終わりました。
ではこのモデルのテストを行っていきましょう。
enter image description here
enter image description here
予測値と正しい値を比べてみます。
正答率は98パーセントと高い値を出しています。
ところで、ロジスティック回帰ではそれぞれのデータ点がC_1に属している確率を出してくれます。
Pの列を確認してみてください。
0.5に近い値のものがあまり、無いと思います。(見えてるところだけですが、、(笑))

コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータXを例えば次のように線形分離できるように\phi(x)に送る写像\phiを考えます。 カーネルは次のように定義されます。 K(x,y) = \phi(x)^T \phi(y) \phiを具体的に計算することは難しいですが、K(x,y)を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2 ここで、 プロトタイプは\mu_i ~\forall k \in Kとしま...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードにd=\inftyを割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードにd=\inftyを割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムではO(log(|V|^2))という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

Kullback-Leibler divergence

Introduction sorry, this page is Japanese only.   今日がダイバージェンスについて書いていきます。 ちなみにエントロピーの知識を使うのでエントロピーの記事も見てあげてください。 エントロピーの記事はこちら Kullback-Leibler Divergence 二つの確率分布の平均エントロピーの差を表す値をKLダイバージェンスといいます。 式では次のように定義されます。 KL(P||Q) = \int_{-\infty}^{\infty} P(X) log \frac{P(X)}{Q(X)} 離散の場合は KL(P||Q) = \sum_{i} P(X_i) log \frac{P(X_i)}{Q(X)} なぜ二つの分布間の距離をこのように定義できるのでしょうか。 式の解釈 真の分布P(X)が存在するとします。しかし、有限のデータから真の分布P(X)を求めるのは難しいです。そこで、有限のデータから推定して得られた確率分布をQ(X)とします。では真の分布P(X)と推定した分布Q(X)はどれだけ違っているのでしょうか。 ここで登場するのがエントロピーです。エントロピーはその分布の不確実性を示す値でした。 エントロピーが高いほど不確かなことが起こるとゆうことです。 P(X)のエントロピーとは-\int_{-\infty}^{\infty} logP(X)でした。 では推定した確率分布Q(X)は確率分布P(X)に対してどれだけ不確実性を持っているのでしょうか。エントロピーとは情報量の期待値でした。確率分布Q(X)が持つ情報量は-logQ(X)です。この情報量を確率P(X)で期待値をとります。 式は以下のようになります。 -\int_{-\infty}^{\infty} P(X) logQ(X) この値と真の分布のエントロピーとの差を二つの分布間の差として定義します。式では以下のようになります。 -\int_{-\infty}^{\infty} P(X) logQ(X) - (--\int_{-\infty}^{\infty} P(X) logP(X))) これを式変形すると $$-\int_{-\infty}^...