スキップしてメイン コンテンツに移動

Implementation of Logistic Regression

Introduction


Today, I implement Logistic Regression.
My OS of computer is the windows10.
Implementation is used by Python3.
I use the IRLS to estimate optimization value.
I introduce the theory of Logistic Regression in another post.
If you interested, look at this post.

Overview

  • I will introduce used data set
  • I will introduce my code in Python
  • I will show you result on Command line.

Dataset

I use this dataset to implement Logistic Regression.
This dataset is Residential area data.
I diplay this data in Pandas DataFrame Python3.
enter image description here
This is data set from top to five elements.
if people live the house, occupancy is 1.
if people do not live the house, occupancy is 0.
This data consist of 8000 samples to use as training data, and 2000 samples to use as test data.
However I use 100 samples as training data and 100 samples as test data, because my computer is not designated programing.
Sorry, .

CODE

This code is very long.
Thus, I publish my code of Logistice Regression in my Github.
My github page
My Logistic Regression code(def file)
My Logistic Regression code(main file)
Separating my code have reason. It is that I want to separate define file and main file. main file have
if __name__ == '__mian__'
my def file have algorithm of Logistic Regression. My code is defined class in def file. I will write about class in Python.

Execution!

w is estimating…
enter image description here
I will save figure of value of Closs-entropy error function
enter image description here
This is sactter plot of closs entropy error function.
enter image description here
I find out decreasing of value of closs entropy error funtion.
I finished estimating optimization.
I will test my model of Logistic Regression.
enter image description here
enter image description here
I compare my predict by Logistic Regression and correct class.
Percentage of correct answer is 98per.
I think this is high score.
By the way, Logistic Regression find out probability that each data point exists \(C_1\)
Please check out P columns.
As long as I identify, Almost the P is not near 0.5.

コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...

最尤推定

Introduction English ver 今日は最尤推定について加工と思います。これは統計的推定でよく使われる手法です。最尤推定の例も書こうと思います。初めに尤度の説明をし、そのあとで最尤推定の説明をします。 概要 尤度 最尤推定 最尤推定の問題点 尤度 前提条件から得られる観察データを考えます。この時、えられた観測データに対して前提条件が尤もらしい条件であるかの値を尤度といいます。 なにをゆっているのかわからない人がほとんどだと思います。。。 尤度の例を扱っていきます。 コインを投げることを考えます。このコインは確率Pで表、確率1-Pで裏を出すコインだとします。 例えば、100回コインを投げたとき、全て表だったとします。この時このコインが表が出る確率はかなり1に近いことが予想されます。 ではもし、表が出る確率PがP=0.5だとします。この時、表が100回連続で出る確率は$0.5^{100} = 7.88860e-31$になります。あり得ない確率ですね。これがP=0.5としたときのもっともらしさです。つまり、あまり現実的ではないということです。 もしP=0.99とするとき、100回とも表が出る確率は$0.99^{100} = 0.3666....$となります。つまり、P=0.99としたときの尤度は0.36くらいということです。よって、P=0.5よりかは現実見があることになります。まだまだ低い数字ではありますが。 観測データである、100回表が出るという事象を固定したとき、尤度はPを変数としたP(100回表|P)を尤度関数と呼びます。この関数の値を尤度と呼びます。 尤度が高いほうが尤もらしい値、つまり理にかなっているなと感じることができる値ということになります。 例えば、先ほどの例でゆうと、 P=0.5としたときの尤度は7.88860e-31でした。P=0.99としたときの尤度は0.3666でした。よってP=0.5より、P=0.99のほうが尤もらしい自然な値ということになります。 最尤推定 最尤推定とは得られた観測データからデータが依存している分布のパラメーターを推測するための手法です。 最尤推定では尤度を最大化して、最も尤もらしいパラメーターを求めます。 確率密度関数...

離散フーリエ変換

Introduction English ver 今日は離散フーリエ変換について書きます。 現在、シグナル解析についてのpdfを作成中です。このpdfは github で公開中です。 シグナル解析は、courseraのレクチャーで勉強中です。 ここ にリンクを貼っておきます。 pdfは随時更新中です。