スキップしてメイン コンテンツに移動

Definition of Topology space

Introduction

Today, I will write about General Topology. General topology is very impossible for studying mathematics. General topology defines phase to define continuity of function. Today, I will explain phase.

Also, This post is my review of General Topology.

Overview

  •  Distance space
  • Axiom of phase
  • Topology space
  • Open set


Distance space
Firstly, Distance space is defined.
Let X is set, $d:X\times X ->\mathbb{R}$,

(X,d) is distance space $\iff$

  • $\forall x,y \in X,~~~~~d(x,y) \geq 0$
  • $\forall x,y \in X,~~~~~x = y \implies d(x,y) = 0$
  • $\forall x,y \in X,~~~~~d(x,y) = d(y,x)$
  • $\forall x,y,z \in X, ~~~~d(x,y) + d(y,z) \geq d(x,z)$


this condition is called axiom of distance.
d is called distance function.

Topology space
Let (X,d) is distance space.
$\mathbb{O} \in 2^X$ is phase in (X,d) $\iff$


  • $\phi,X \in \mathbb{O}$
  • $\forall O_1,O_2 \in \mathbb{O} \implies O_1 \cap O_2 \in \mathbb{O}$
  • $\forall \Lambda ,~~\forall \{O_\lambda \}_{\lambda \in \Lambda} \in O \implies \bigcup_{\lambda \in \Lambda} O_\lambda \in \mathbb{O}$


here, $2^X := \{A | A \subset X \}$

Its condition is called axiom of phase.

We must watch out for $\Lambda$.
$\Lambda$ is any Suffix set.

then $(X,d,\mathbb{O})$ is phase space.

Open set
$A \subset X$ is open set$\iff$

$$\forall x \in A,~~\exists \epsilon > 0, ~~s.t.~~ B(x,\epsilon) \subset A$$
here, $$B(x,\epsilon):= \{y\in A| d(x,y) < \epsilon\}$$

This definition of the open set is a satisfied condition of the axiom of phase.

Let X:set , $d:X \times X -> \mathbb{R}$: distance function.
Let
$$\mathbb{O} := \{A \subset X|A :open set\}$$.
then $\mathbb{O}$ is satisfyed axiom of phase.

proof.


  • $\phi,X \in \mathbb{O}$


This is obvious, because $\phi$ do not have element, so $\phi$ is open set, and $\forall x \in X, \exists \epsilon > 0 ~~s.t.~~ B(x,\epsilon) \subset X$. This is satisfyed becaue X is whole set.


  • $\forall O_1,O_2 \in \mathbb{O} \implies O_1 \cap O_2 \in \mathbb{O}$


about $\forall O_1,O_2 \in \mathbb{O}$,$\forall x \in O_1 \cap O_2$
because $x \in O_1$and $x \in O_2$, $\exists \epsilon_1 ~~s.t.~~ B(x,\epsilon_1) \in O_1$ and $\exists \epsilon_2 ~~s.t.~~ B(x,\epsilon_2) \in O_2$
So,Let  $\epsilon := \min\{\epsilon_1,\epsilon_2\}$, following is satisfyed.
$$B(x,\epsilon) \subset B(x,\epsilon_1)$$
$$B(x,\epsilon) \subset B(x,\epsilon_2)$$

Thus, $$B(x,\epsilon) \subset O_1 \cap O_2$$


  • $\forall \Lambda ,~~\forall \{O_\lambda \}_{\lambda \in \Lambda} \in O \implies \bigcup_{\lambda \in \Lambda} O_\lambda \in \mathbb{O}$


about,$\forall \{O_\lambda\}_{\lambda \in \Lambda}$,
$$\forall x \in \bigcup_{\lambda \in \Lambda} \{O_\lambda\}_{\lambda \in \Lambda},$$
because $\forall x \in \{O_\lambda\}_{\lambda \in \Lambda},$ following is satisfed.
$$\exists \lambda_0 \in \Lambda ~~.st.~~ x \in O_{\lambda_0}$$
Thus, $$\exists \epsilon ~~s.t.~~ B(x,\epsilon) \subset O_{\lambda_0}$$
So, $$B(x,\epsilon) \subset \{O_\lambda\}_{\lambda \in \Lambda}$$

Q.E.D

Conclusion
We often define phase by open set.
Continuity of function is defined by this phase.
I will explain the definition of continuity of function by phase.

Reference
https://ja.wikipedia.org/wiki/%E8%B7%9D%E9%9B%A2%E7%A9%BA%E9%96%93

https://ja.wikipedia.org/wiki/%E4%BD%8D%E7%9B%B8%E7%A9%BA%E9%96%93

コメント

このブログの人気の投稿

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...