スキップしてメイン コンテンツに移動

Implement kernel k-means

Introduction  

Today, I implement kernel k-means. The k-means algorithm is clustering algorithm. A reason that I implement kernel k-means algorithm is that I and my friend conceived introducing kernel to k-means. I investigated paper of kernel k-means. I found [This page](http://www.cs.utexas.edu/users/inderjit/public_papers/kdd_spectral_kernelkmeans.pdf)  Thus I could implement kernel k-means algorithm. I introduce the implementation of normal k-means and kernel k-means.


I handle the only implementation of kernel k-means. I will write the theory of kernel k-means. If I finished writing it, I publish on this post.

I finished. Theorem of K-means

Overview  


  • dataset  
  • a few explaining k-means
  •  k-means  
  •  kernel k-means  


Dataset  

I used two datasets. first data is designated for normal k-means. second data is designated for kernel k-means.


First data has consisted of three group and two-dimensional data, 300 samples.
The distribution is as follow.

Second data has consisted of two groups and two dimensional, 300 samples.
The distribution is as follow.

I publish a code of dataset.
THIS PAGE!!
A few explaining k-means
k-means algorithm computes mean vector in K class. second, k-means algorithm computes the distance between each data point and each mean vector. third, k-means algorithm choice as a new label of data point. How to choice is a mean vector in class K which minimize the distance between a mean vector and data point.
k-means  


Firstly, I implement normal k-means algorithm. I use first data to test my code. A Result of the test is complicated.


The centroid is mean vactor.


However, the k-means algorithm has weak points. You can understand by looking as follow.


This image is results that I use my k-means algorithm for second data.
Normal k-means depend on Euclid distance between the mean vector and data point in data space. Therefore I failed to cluster.

Kernel k-means
I failed to cluster in normal k-means.
However, I success clustering by using kernel trick.
Its result is as follow.



This clustering is complicated.
the kernel is the best way of non-linear clustering.


CODE
My code of kernel k-means algorithm is published in this page.

A git_Kmeans_def.py file is written function used in normal k-means.
A git_Kmeans_main.py file is the main file. This file is written if __name == '__main__':.

A git_kernel_Kemans_def.py file is written function used in kernel k-means.
A git_kernel_Kemans_main.py file is a main file. This file is written if __name__ == '__main__':

Reference  

http://www.cs.utexas.edu/users/inderjit/public_papers/kdd_spectral_kernelkmeans.pdf
https://sites.google.com/site/dataclusteringalgorithms/kernel-k-means-clustering-algorithm

コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

MAP推定

Introduction English ver 今日はMAP推定(事後確率最大化法)について書きました。MAP推定ではベイズの定理を使います。データが少ないとき、最尤推定の結果をあまり信用できない話は、最尤推定の時に書きました。この時、MAP推定では自分の事前に持っている情報を取り入れることができます。 概要 ベイズの定理 MAP推定 共役分布 MAP推定の例 ベイズの定理 ベイズの定理は $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ です。 ただし、 $P(A|B)$ はBが起こった時のAの起こる確率です。 詳しくは  http://takutori.blogspot.com/2018/04/bayes-theorem.html  を見てください。 Map推定 MAP推定ではベイズの定理を使います。MAP推定は事後確率が最大になるようなパラメータを選びます。 いま、$x_1,x_2,...,x_n$というデータを$\theta$というパラメータを持つ分布から得られたとする。この時$P(\theta|x_1,x_2,...,x_n)$を求めたい。 ここで、ベイズの定理を使う。 $$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}$$ ここで、$P(\theta)$は$\theta$の事前分布である。 $x_1,x_2,...,x_n$はそれぞれ独立であるので、 $$P(x_1,x_2,...,x_n | \theta ) = \Pi_{i=1}^n P(x_i|\theta)$$. よって、マップ推定は $$\theta^{\star} = \arg \max_{\theta} \frac{\Pi_{i=1}^n P(x_i|\theta) P(\theta)}{P(x_1,x_2,...,x_n)}$$ となる。 $P(x_1,x_2,...,x_n)$という値は$\theta$には依存しない。よって、定数であり、最適化に定数は関係ないので、排除すると、MAP推定は次のようになる。 $$\th...