スキップしてメイン コンテンツに移動

カーネルk-meansの実装

Introduction  

今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。ここのpdfを主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。

また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。

理論編書きました。K-means 理論編

概要
  • dataset  
  • ちょっとだけ理論の説明
  •  k-means  
  •  kernel k-means  


Dataset  

今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。

一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。

二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。

 this pageにデータセットを作ったコードを載せています。

ちょっとだけ理論の説明
k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かなくなるまで続けます。

k-means  

初めに普通のk-meansを実装しました。テスト用として、一つ目のデータセットを使いました。
結果はうまくいっていると思います。


centroidとは重心ベクトルのことで、各クラスの平均ベクトルになります。

しかしながら、k-meansアルゴリズムには様々な弱点があります。その一つは以下の画像を見てもらえればすぐにわかると思います。



この画像は、二つ目のデータセットにk-menasアルゴリズムを適応した結果です。
普通のk-meansではデータ空間で平均ベクトルとデータ点とのユークリッド距離を求めるため、このようにうまくいきません。

Kernel k-means

先ほどの例により、k-meansアルゴリズムには、うまくいかない点がありました。しかし、これをカーネルトリックを用いることでうまく解決できます
その結果がこちらです。

このクラスタリングは完璧ですね。

CODE
こちらにkernel k-means含め、すべてのコードを載せています。

git_Kmeans_def.pyではk-meansに必要な様々な関数を書いています。
git_Kemans_main.pyではk-meansを実行するためのコードを書いています。いわゆるメインファイルです。当然 if __name__ == '__main__':が入っています。

git_kernel_Kmeans_def.pyではkernel k-meansに必要な様々な関数を書いています。
git_kernel_Kemans_main.pyではkernel k-meansを実行するためのコードを書いています。いわゆるメインファイルです。当然 if __name__ == '__main__':が入っています。

Reference  

http://www.cs.utexas.edu/users/inderjit/public_papers/kdd_spectral_kernelkmeans.pdf
https://sites.google.com/site/dataclusteringalgorithms/kernel-k-means-clustering-algorithm

コメント

このブログの人気の投稿

Implementation of Robbins monro

Robbins monro の実装 sorry, this page is Japanese only.   今回はRobbins monro の実装をしてみました。 Robbins monroは確率勾配降下法の学習率を入りテーション回数の逆数で割っていくものです。 使っているprogram言語はpython 3です。osはwindowsです。(macほしい...) アルゴリズム 確率勾配降下方とは目的関数の最適解を求めるアルゴリズムです。目的関数をf(X)とすると、手順は以下のようになっています。 初期学習率$n_0$を決めます。訓練データDを用意します。この訓練データは複数の初期値の集まりです。 訓練データから一つ初期値をランダムに取り出し、これを$x_0$とし、最初の予測値とします。 次の式に現在の予測値$x_0$を代入し、新たな予測値$x_{n+1}$を得ます。$$x_{n+1} = x_{n} - \frac{n_0}{n} grad f(X_n)$$ 収束して入れば4へ、収束していなければ2で得られた値$x{n+1}$を新たに$x_n$としてもう一度2を行う。 訓練データを一周していなければ2へ、一周していれば各初期値から得られた解の中から目的関数を最も小さくするものを選ぶ。   実装例 以下の目的関数を最小化させてみましょう。 $$f(x,y) = (x-2)^2 + (y-3)^2 $$ コマンドラインでpythonを実行していきます。 予想通り、(2,3)という解を導き出してくれました。目的関数が簡単だったので、初期値をどの値でとってもばっちり正解にたどり着いてくれました。 CODE 以下にRobbins monroの関数だけ置いておきます。 こちら にすべてのコードを載せています。 def Robbins_monro(function,grad,number_variable_gradient): init_learning_rate = 1.5 stepsize = 1000 init_value = np.array([range(-1000,1020,20) for i in range(number_v...

MAP estimation

Introduction 日本語 ver Today, I will explain MAP estimation(maximum a posteriori estimation). MAP estimation is used Bayes' thorem. If sample data is few, we can not belive value by Maximum likelihood estimation. Then, MAP estimation is enable to include our sense.  Overveiw Bayes' theorem MAP estimation Conjugate distribution Bayes' theorem  Bayes' theorem is $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ $P(A|B)$ is Probability when B occur. Please go on  http://takutori.blogspot.com/2018/04/bayes-theorem.html to know detail of Bayes' theorem. Map estimation Map estimation is used Bayes' theorem. Map estimation estimate parameter of population by maximuzing posterior probability. Now, suppoce we get data $x_1,x_2,...,x_n$ from population which have parameter $\theta$. Then, we want to $P(\theta|x_1,x_2,...,x_n)$. Here, we use Bayes' theorem. $$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}...

dijkstra method

Introduction 日本語 ver Today, I will write about the dijkstra method. This method is algorithm which find the shortest distance. The map is expressed by graph. If you never see  this page , look at its page. This page explain the heap structure and definition of graph. The dijkstra method used heap structure, Because heap structure reduce the amout of calculation of dijkstra method. I use  this slide  to explain dijkstra. Overview Algorithm Implementation Algorithm This algorithm is  Decide start node, and this node named A. Allocate $d=\infty$ for each node, but d=0 for start node. Adjacent node of A named adj_list.  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. Remove A from graph network. Find node which have the smallest d and it named A, and if network have node, back to 4. I explain this algorithm by drawing.  I explain algorithm by using this graph.  Fis...