スキップしてメイン コンテンツに移動

カーネルk-meansの実装

Introduction  

今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。ここのpdfを主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。

また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。

理論編書きました。K-means 理論編

概要
  • dataset  
  • ちょっとだけ理論の説明
  •  k-means  
  •  kernel k-means  


Dataset  

今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。

一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。

二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。

 this pageにデータセットを作ったコードを載せています。

ちょっとだけ理論の説明
k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かなくなるまで続けます。

k-means  

初めに普通のk-meansを実装しました。テスト用として、一つ目のデータセットを使いました。
結果はうまくいっていると思います。


centroidとは重心ベクトルのことで、各クラスの平均ベクトルになります。

しかしながら、k-meansアルゴリズムには様々な弱点があります。その一つは以下の画像を見てもらえればすぐにわかると思います。



この画像は、二つ目のデータセットにk-menasアルゴリズムを適応した結果です。
普通のk-meansではデータ空間で平均ベクトルとデータ点とのユークリッド距離を求めるため、このようにうまくいきません。

Kernel k-means

先ほどの例により、k-meansアルゴリズムには、うまくいかない点がありました。しかし、これをカーネルトリックを用いることでうまく解決できます
その結果がこちらです。

このクラスタリングは完璧ですね。

CODE
こちらにkernel k-means含め、すべてのコードを載せています。

git_Kmeans_def.pyではk-meansに必要な様々な関数を書いています。
git_Kemans_main.pyではk-meansを実行するためのコードを書いています。いわゆるメインファイルです。当然 if __name__ == '__main__':が入っています。

git_kernel_Kmeans_def.pyではkernel k-meansに必要な様々な関数を書いています。
git_kernel_Kemans_main.pyではkernel k-meansを実行するためのコードを書いています。いわゆるメインファイルです。当然 if __name__ == '__main__':が入っています。

Reference  

http://www.cs.utexas.edu/users/inderjit/public_papers/kdd_spectral_kernelkmeans.pdf
https://sites.google.com/site/dataclusteringalgorithms/kernel-k-means-clustering-algorithm

コメント

このブログの人気の投稿

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

Discrete Fourier transform

Introduction 日本語 ver I will write about Discrete Fourier transform. Discrete Fourier transform is Abbreviated DFT. I am making pdf about Audio Signal Processing. I publish pdf at  github . However, I write tex in Japanese. I take a lecture about the signal processing. There is lecture at  thie page . I update this pdf.