Processing math: 100%
スキップしてメイン コンテンツに移動

カーネルk-meansの実装

Introduction  

今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。ここのpdfを主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。

また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。

理論編書きました。K-means 理論編

概要
  • dataset  
  • ちょっとだけ理論の説明
  •  k-means  
  •  kernel k-means  


Dataset  

今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。

一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。

二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。

 this pageにデータセットを作ったコードを載せています。

ちょっとだけ理論の説明
k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かなくなるまで続けます。

k-means  

初めに普通のk-meansを実装しました。テスト用として、一つ目のデータセットを使いました。
結果はうまくいっていると思います。


centroidとは重心ベクトルのことで、各クラスの平均ベクトルになります。

しかしながら、k-meansアルゴリズムには様々な弱点があります。その一つは以下の画像を見てもらえればすぐにわかると思います。



この画像は、二つ目のデータセットにk-menasアルゴリズムを適応した結果です。
普通のk-meansではデータ空間で平均ベクトルとデータ点とのユークリッド距離を求めるため、このようにうまくいきません。

Kernel k-means

先ほどの例により、k-meansアルゴリズムには、うまくいかない点がありました。しかし、これをカーネルトリックを用いることでうまく解決できます
その結果がこちらです。

このクラスタリングは完璧ですね。

CODE
こちらにkernel k-means含め、すべてのコードを載せています。

git_Kmeans_def.pyではk-meansに必要な様々な関数を書いています。
git_Kemans_main.pyではk-meansを実行するためのコードを書いています。いわゆるメインファイルです。当然 if __name__ == '__main__':が入っています。

git_kernel_Kmeans_def.pyではkernel k-meansに必要な様々な関数を書いています。
git_kernel_Kemans_main.pyではkernel k-meansを実行するためのコードを書いています。いわゆるメインファイルです。当然 if __name__ == '__main__':が入っています。

Reference  

http://www.cs.utexas.edu/users/inderjit/public_papers/kdd_spectral_kernelkmeans.pdf
https://sites.google.com/site/dataclusteringalgorithms/kernel-k-means-clustering-algorithm

コメント

このブログの人気の投稿

Implementation of Robbins monro

Robbins monro の実装 sorry, this page is Japanese only.   今回はRobbins monro の実装をしてみました。 Robbins monroは確率勾配降下法の学習率を入りテーション回数の逆数で割っていくものです。 使っているprogram言語はpython 3です。osはwindowsです。(macほしい...) アルゴリズム 確率勾配降下方とは目的関数の最適解を求めるアルゴリズムです。目的関数をf(X)とすると、手順は以下のようになっています。 初期学習率n_0を決めます。訓練データDを用意します。この訓練データは複数の初期値の集まりです。 訓練データから一つ初期値をランダムに取り出し、これをx_0とし、最初の予測値とします。 次の式に現在の予測値x_0を代入し、新たな予測値x_{n+1}を得ます。x_{n+1} = x_{n} - \frac{n_0}{n} grad f(X_n) 収束して入れば4へ、収束していなければ2で得られた値x{n+1}を新たにx_nとしてもう一度2を行う。 訓練データを一周していなければ2へ、一周していれば各初期値から得られた解の中から目的関数を最も小さくするものを選ぶ。   実装例 以下の目的関数を最小化させてみましょう。 f(x,y) = (x-2)^2 + (y-3)^2 コマンドラインでpythonを実行していきます。 予想通り、(2,3)という解を導き出してくれました。目的関数が簡単だったので、初期値をどの値でとってもばっちり正解にたどり着いてくれました。 CODE 以下にRobbins monroの関数だけ置いておきます。 こちら にすべてのコードを載せています。 def Robbins_monro(function,grad,number_variable_gradient): init_learning_rate = 1.5 stepsize = 1000 init_value = np.array([range(-1000,1020,20) for i in range(number_v...

ヘッセ行列

Introduction English ver 今日は、ヘッセ行列を用いたテイラー展開について書こうと思います。 これは最適化を勉強するにあたって、とても大事になってくるので自分でまとめて残しておくことにしました。とくに、機械学習では最適化を必ず行うため、このブログのタイトルにもマッチした内容だと思います。 . 概要 ヘッセ行列の定義 ベクトルを用いたテイラー展開 関数の最適性 ヘッセ行列の定義 仮定 f は次のような条件を満たす関数です。. f はn次元ベクトルから実数値を出力します。 このベクトルは次のように表せます。 x = [x_1,x_2,,,,x_n] \forall x_i , i \in {1,2,,,n}, f は二回偏微分可能です。 定義 ヘッセ行列は \frac{\partial^2}{\partial x_i \partial x_j}を (i,j)要素に持ちます。 よってヘッセ行列は次のように表せます。 \[ H(f) = \left( \begin{array}{cccc} \frac{\partial^ 2}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & &\ldots \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^ 2 f}{\partial x_1 \partial x_2} & \frac{\partial^ 2 f}{\partial x_2^ 2} & \ldots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \ldo...

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータXを例えば次のように線形分離できるように\phi(x)に送る写像\phiを考えます。 カーネルは次のように定義されます。 K(x,y) = \phi(x)^T \phi(y) \phiを具体的に計算することは難しいですが、K(x,y)を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2 ここで、 プロトタイプは\mu_i ~\forall k \in Kとしま...