スキップしてメイン コンテンツに移動

K-means 理論編

Introduction


今日はK-meansアルゴリズムの理論について書きます。
K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。

K-meansの実装の記事は
カーネルK-meansの実装
を御覧ください。
この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。

概要

  • 1 of K 符号化法
  • プロトタイプ
  • 歪み尺度
  • 最適化
1 of K 符号化法

K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。
ベクトル$r_n:1 \times K$ を
$$r_n := (0,0,..,1,..,0)$$
このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。

こののような表現の仕方を1 of K符号化法と呼びます。

プロトタイプ

K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。

歪み尺度

プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。
この時、k-meansの目的関数は次のようになります。

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$

ここで、 $r_{nk}$ は$r_n$のk番目の要素です。

この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、

$$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$

ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。

よって、
$$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ... + ||x_N - \mu_{x_N}||$$

では、この目的関数を最小化することを考えます。
初めに$J$を$r_n$について最小化することをかんがえます。

$||x_n-\mu_k||^2$ は$x_n$と$x_n$が属しているクラスのプロトタイプとの距離なので、,
$r_n$ は次のように決まります。

$$k = \arg \min_{j} || x_n - \mu_{j} || \implies r_{nk} = 1$$
$$else \implies r_{n_k} = 0$$



次に、$r_{n_k}$を固定したときに、$J$を$\mu_k$について最小化します。
偏微分は
$$2\sum_{n=1} ^{N} r_{n_k} (x_n-\mu_k) = 0$$
よって
$$2\sum_{n=1} ^{N} \{r_{n_k} x_n\} - \mu_k \sum_{n=1}^{N}r_{n_k} = 0 $$
$$\mu_k = \frac{\sum_{n} r_{n_k} x_n}{\sum_n r_{n_k}}$$

この値はkクラスの平均ベクトルとなっていることがわかります。
その結果、プロトタイプは平均ベクトルであることがわかります。

$r_n$を$\mu_k$について、最適化するわけですが、どちらにももう片方の変数が使われているため、どちらかを固定して交互に最適化する必要があります。

$r_n$を求める$\rightarrow$ $r_n$を固定して$\mu_k$を求める$\rightarrow$ $\mu_k$を固定して$r_n$を求める$\rightarrow$ .......

収束条件は平均ベクトルの変化量を用いることが多いです。平均ベクトルがほとんど動かなくなったら修了します。


もし、EMアルゴリズムをご存知であるならば、$J$を$r_n$について最小化するのはEステップにあたり、$J$を$\mu$について最小化することはMステップにあたります。

Reference

コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...

Mahalanobis' Distance

Introduction 日本語 ver Today, I will write about Mahalanobis’ Distance. Mahalanobis’ Distance is used when each dimension has a relationship. This distance is fulfilled definition of distance. Mahalanobis’ Distance is important for Statics. If you interested in Statics or Machine Learning, Please see my this blog. Overview definition of distance deficition of Mahalanobis’ Distance image of Mahalanobis’ Distance definition of distance if d is distance function, d if fulfilled following condtion. \(d:X \times X -> R\) \(d(x,y) \geq 0\) \(d(x,y) = 0 \leftrightarrow x = y\) \(d(x,y) = d(y,x)\) \(d(x,z) \leq d(x,y) + d(y,z)\) Mahalanobis’ Distance Mahalanobis’ Distance is distance function. Mahalanobis’ Distance is defined by following from \[D_{M}(x) = \sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)}\] here, \(\mu\) is mean vector \[\mu = (\mu_1,\mu_2,....,\mu_n)\] and, \(\Sigma\) is variance-convariance matrix. Mahalanobis’ Distance between x and y is \begin{eqnarray...

Kullback-Leibler divergence

Introduction sorry, this page is Japanese only.   今日がダイバージェンスについて書いていきます。 ちなみにエントロピーの知識を使うのでエントロピーの記事も見てあげてください。 エントロピーの記事はこちら Kullback-Leibler Divergence 二つの確率分布の平均エントロピーの差を表す値をKLダイバージェンスといいます。 式では次のように定義されます。 $$KL(P||Q) = \int_{-\infty}^{\infty} P(X) log \frac{P(X)}{Q(X)}$$ 離散の場合は $$KL(P||Q) = \sum_{i} P(X_i) log \frac{P(X_i)}{Q(X)}$$ なぜ二つの分布間の距離をこのように定義できるのでしょうか。 式の解釈 真の分布P(X)が存在するとします。しかし、有限のデータから真の分布P(X)を求めるのは難しいです。そこで、有限のデータから推定して得られた確率分布をQ(X)とします。では真の分布P(X)と推定した分布Q(X)はどれだけ違っているのでしょうか。 ここで登場するのがエントロピーです。エントロピーはその分布の不確実性を示す値でした。 エントロピーが高いほど不確かなことが起こるとゆうことです。 P(X)のエントロピーとは$-\int_{-\infty}^{\infty} logP(X)$でした。 では推定した確率分布Q(X)は確率分布P(X)に対してどれだけ不確実性を持っているのでしょうか。エントロピーとは情報量の期待値でした。確率分布Q(X)が持つ情報量は$-logQ(X)$です。この情報量を確率P(X)で期待値をとります。 式は以下のようになります。 $$-\int_{-\infty}^{\infty} P(X) logQ(X)$$ この値と真の分布のエントロピーとの差を二つの分布間の差として定義します。式では以下のようになります。 $$-\int_{-\infty}^{\infty} P(X) logQ(X) - (--\int_{-\infty}^{\infty} P(X) logP(X)))$$ これを式変形すると $$-\int_{-\infty}^...