スキップしてメイン コンテンツに移動

K-means 理論編

Introduction


今日はK-meansアルゴリズムの理論について書きます。
K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。

K-meansの実装の記事は
カーネルK-meansの実装
を御覧ください。
この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。

概要

  • 1 of K 符号化法
  • プロトタイプ
  • 歪み尺度
  • 最適化
1 of K 符号化法

K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。
ベクトル$r_n:1 \times K$ を
$$r_n := (0,0,..,1,..,0)$$
このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。

こののような表現の仕方を1 of K符号化法と呼びます。

プロトタイプ

K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。

歪み尺度

プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。
この時、k-meansの目的関数は次のようになります。

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$

ここで、 $r_{nk}$ は$r_n$のk番目の要素です。

この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、

$$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$

ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。

よって、
$$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ... + ||x_N - \mu_{x_N}||$$

では、この目的関数を最小化することを考えます。
初めに$J$を$r_n$について最小化することをかんがえます。

$||x_n-\mu_k||^2$ は$x_n$と$x_n$が属しているクラスのプロトタイプとの距離なので、,
$r_n$ は次のように決まります。

$$k = \arg \min_{j} || x_n - \mu_{j} || \implies r_{nk} = 1$$
$$else \implies r_{n_k} = 0$$



次に、$r_{n_k}$を固定したときに、$J$を$\mu_k$について最小化します。
偏微分は
$$2\sum_{n=1} ^{N} r_{n_k} (x_n-\mu_k) = 0$$
よって
$$2\sum_{n=1} ^{N} \{r_{n_k} x_n\} - \mu_k \sum_{n=1}^{N}r_{n_k} = 0 $$
$$\mu_k = \frac{\sum_{n} r_{n_k} x_n}{\sum_n r_{n_k}}$$

この値はkクラスの平均ベクトルとなっていることがわかります。
その結果、プロトタイプは平均ベクトルであることがわかります。

$r_n$を$\mu_k$について、最適化するわけですが、どちらにももう片方の変数が使われているため、どちらかを固定して交互に最適化する必要があります。

$r_n$を求める$\rightarrow$ $r_n$を固定して$\mu_k$を求める$\rightarrow$ $\mu_k$を固定して$r_n$を求める$\rightarrow$ .......

収束条件は平均ベクトルの変化量を用いることが多いです。平均ベクトルがほとんど動かなくなったら修了します。


もし、EMアルゴリズムをご存知であるならば、$J$を$r_n$について最小化するのはEステップにあたり、$J$を$\mu$について最小化することはMステップにあたります。

Reference

コメント

このブログの人気の投稿

MAP推定

Introduction English ver 今日はMAP推定(事後確率最大化法)について書きました。MAP推定ではベイズの定理を使います。データが少ないとき、最尤推定の結果をあまり信用できない話は、最尤推定の時に書きました。この時、MAP推定では自分の事前に持っている情報を取り入れることができます。 概要 ベイズの定理 MAP推定 共役分布 MAP推定の例 ベイズの定理 ベイズの定理は $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ です。 ただし、 $P(A|B)$ はBが起こった時のAの起こる確率です。 詳しくは  http://takutori.blogspot.com/2018/04/bayes-theorem.html  を見てください。 Map推定 MAP推定ではベイズの定理を使います。MAP推定は事後確率が最大になるようなパラメータを選びます。 いま、$x_1,x_2,...,x_n$というデータを$\theta$というパラメータを持つ分布から得られたとする。この時$P(\theta|x_1,x_2,...,x_n)$を求めたい。 ここで、ベイズの定理を使う。 $$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}$$ ここで、$P(\theta)$は$\theta$の事前分布である。 $x_1,x_2,...,x_n$はそれぞれ独立であるので、 $$P(x_1,x_2,...,x_n | \theta ) = \Pi_{i=1}^n P(x_i|\theta)$$. よって、マップ推定は $$\theta^{\star} = \arg \max_{\theta} \frac{\Pi_{i=1}^n P(x_i|\theta) P(\theta)}{P(x_1,x_2,...,x_n)}$$ となる。 $P(x_1,x_2,...,x_n)$という値は$\theta$には依存しない。よって、定数であり、最適化に定数は関係ないので、排除すると、MAP推定は次のようになる。 $$\th...

MAP estimation

Introduction 日本語 ver Today, I will explain MAP estimation(maximum a posteriori estimation). MAP estimation is used Bayes' thorem. If sample data is few, we can not belive value by Maximum likelihood estimation. Then, MAP estimation is enable to include our sense.  Overveiw Bayes' theorem MAP estimation Conjugate distribution Bayes' theorem  Bayes' theorem is $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ $P(A|B)$ is Probability when B occur. Please go on  http://takutori.blogspot.com/2018/04/bayes-theorem.html to know detail of Bayes' theorem. Map estimation Map estimation is used Bayes' theorem. Map estimation estimate parameter of population by maximuzing posterior probability. Now, suppoce we get data $x_1,x_2,...,x_n$ from population which have parameter $\theta$. Then, we want to $P(\theta|x_1,x_2,...,x_n)$. Here, we use Bayes' theorem. $$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}...

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...