スキップしてメイン コンテンツに移動

最尤推定

Introduction


今日は最尤推定について加工と思います。これは統計的推定でよく使われる手法です。最尤推定の例も書こうと思います。初めに尤度の説明をし、そのあとで最尤推定の説明をします。

概要


  • 尤度
  • 最尤推定
  • 最尤推定の問題点

尤度

前提条件から得られる観察データを考えます。この時、えられた観測データに対して前提条件が尤もらしい条件であるかの値を尤度といいます。

なにをゆっているのかわからない人がほとんどだと思います。。。
尤度の例を扱っていきます。

コインを投げることを考えます。このコインは確率Pで表、確率1-Pで裏を出すコインだとします。
例えば、100回コインを投げたとき、全て表だったとします。この時このコインが表が出る確率はかなり1に近いことが予想されます。

ではもし、表が出る確率PがP=0.5だとします。この時、表が100回連続で出る確率は$0.5^{100} = 7.88860e-31$になります。あり得ない確率ですね。これがP=0.5としたときのもっともらしさです。つまり、あまり現実的ではないということです。

もしP=0.99とするとき、100回とも表が出る確率は$0.99^{100} = 0.3666....$となります。つまり、P=0.99としたときの尤度は0.36くらいということです。よって、P=0.5よりかは現実見があることになります。まだまだ低い数字ではありますが。


観測データである、100回表が出るという事象を固定したとき、尤度はPを変数としたP(100回表|P)を尤度関数と呼びます。この関数の値を尤度と呼びます。


尤度が高いほうが尤もらしい値、つまり理にかなっているなと感じることができる値ということになります。

例えば、先ほどの例でゆうと、

P=0.5としたときの尤度は7.88860e-31でした。P=0.99としたときの尤度は0.3666でした。よってP=0.5より、P=0.99のほうが尤もらしい自然な値ということになります。


最尤推定

最尤推定とは得られた観測データからデータが依存している分布のパラメーターを推測するための手法です。
最尤推定では尤度を最大化して、最も尤もらしいパラメーターを求めます。

確率密度関数$f$と$X_1,X_2,...,X_n$が$f$に従う確率変数とします。 $$X_1,X_2, ..., X_n \sim f$$

この時、$X_1,X_2,..,X_n$が同時におこる確率は
$$\Pi_{i=1}^{N} P(X_i)$$
いわゆる同時確率です。

よって、尤度関数を次のように定義します。
$$L(\theta) = f(x_1,x_2,...,x_n|\theta)$$

この時、
$$\theta^{\star} \in \arg_{\theta} \max L(\theta)$$
$\theta$最尤推定量といいます。

そして、
$$\frac{\partial}{\partial \theta} \log L(\theta)$$
これを尤度方程式といいます。

なぜ、$\log$がいきなり登場しているのかは後の最尤推定の例で説明します。


最尤推定の例

$x_1,x_2,...,x_n \in {0,1}$について考えます。 $\forall i \in {1,2,..,n}$について、$x_i = 1$とするとき、i回目のコイン投げは表とします。$x_i$とするとき、コインは裏になったとします。

この時、尤度関数は
$$L(\theta) = P(x_1,x_2,...,x_n|\theta) = \Pi_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i}$$

$\forall i \in {1,2,..,n},  \sim p(k;\theta) = \theta^k (1-\theta)^{1-k} ~~~~\textrm{for} k \in {0,1}$

コインはベルヌーイ分布に従うので、このような形になります。
ここで、 $\theta$表が出る確率とします。

$L(\theta)$を$\theta$について最大化したいのですが、微分がかなり難しい形になっています。なぜなら$L(\theta)$について線形でないからです。つまり、$\theta$について掛け算の形になっていることが微分を難しくしています。

この問題を解決するために、$\log$を使います。
$\log$は単調増加関数なので$L(\theta)$と$\log L(\theta)$の局所解は変わりません。

よって、$\log L(\theta)$を最大化します。

\begin{eqnarray*}
\log L(\theta) &=& \log \Pi_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i} \\
&=& \sum_{i=1}^N \log \theta^{x_i} + \log (1-\theta)^{1-x_i} \\
&=& \sum_{i=1}^N  x_i \log \theta + (1-x_i)\log(1-\theta)
\end{eqnarray*}

これの微分は

\begin{eqnarray*}
\frac{\partial}{\partial \theta} \log L(\theta) &=& 0 \\
\frac{\partial}{\partial \theta} \sum_{i=1}^N x_i \log \theta + (1-x_i) \log (1-\theta) &=& 0 \\
\sum_{i=1}^N \frac{x_i}{\theta} - \frac{1-x_i}{1-\theta} &=& 0 \\
\frac{1}{\theta} \sum_{i=1}^N x_i - \frac{1}{1-\theta_i} \sum_{i=1}^N (1-x_i) &=& 0 \\
(1-\theta) \sum_{i=1}^N x_i - \theta \sum_{i=1}^N 1-x_i &=& 0 \\
\sum_{i=1}^N x_i - \theta \sum_{i=1}^N x_i - \theta \sum_{i=1}^N 1 + \theta \sum_{i=1}^N x_i &=& 0 \\
\sum_{i=1}^N x_i - n \theta &=& 0 \\
\theta &=& \frac{\sum_{i=1}^N }{n} \\
\end{eqnarray*}

この最適解は$x_1,x_2,..,x_n$の平均を表していることがわかります。
もし、コインが100回表、裏が0回だった時、最尤推定により、得た$\theta$の値は$\theta=1$
また、コインが50回表、裏が50回であれば、最尤推定により、得られた$\theta$の値は$\theta = 0.5$

最尤推定の問題点

最尤推定には問題点もあります。例えば、先ほどみたとおり、100回表がでて、裏が0解の時、$\theta=1$とするのが尤もらしいという結果が最尤推定から得られました。

ただ、もし3回表がでて、0回裏が出たとき、この時の最尤推定量も$\theta=1$となってします。しかし、3回表が出たからと言って、コインの表が出る確率が1と考えるのはあまりに危険すぎます。


つまり、観測データが少ない場合は最尤推定の結果はあまり信用できません。


Reference

https://ja.wikipedia.org/wiki/%E5%B0%A4%E5%BA%A6%E9%96%A2%E6%95%B0

コメント

  1. 対数尤度をさらに変形していくと確率モデルの分布をデータの出現頻度の分布(経験分布)に近づけるって話にももっていけますよねー。

    返信削除
    返信
    1. コメントありがとうございます!
      すいません。勉強不足で、よろしければご教授していただけないでしょうか?

      削除
  2. このコメントは投稿者によって削除されました。

    返信削除

コメントを投稿

このブログの人気の投稿

カーネルk-meansの実装

Introduction   English ver 今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。 ここのpdf を主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。 また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。 #  理論編書きました。K-means 理論編 概要 dataset   ちょっとだけ理論の説明  k-means    kernel k-means   Dataset   English ver 今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。 一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。 二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。   this page にデータセットを作ったコードを載せています。 ちょっとだけ理論の説明 k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かな...

Implementation of Robbins monro

Robbins monro の実装 sorry, this page is Japanese only.   今回はRobbins monro の実装をしてみました。 Robbins monroは確率勾配降下法の学習率を入りテーション回数の逆数で割っていくものです。 使っているprogram言語はpython 3です。osはwindowsです。(macほしい...) アルゴリズム 確率勾配降下方とは目的関数の最適解を求めるアルゴリズムです。目的関数をf(X)とすると、手順は以下のようになっています。 初期学習率$n_0$を決めます。訓練データDを用意します。この訓練データは複数の初期値の集まりです。 訓練データから一つ初期値をランダムに取り出し、これを$x_0$とし、最初の予測値とします。 次の式に現在の予測値$x_0$を代入し、新たな予測値$x_{n+1}$を得ます。$$x_{n+1} = x_{n} - \frac{n_0}{n} grad f(X_n)$$ 収束して入れば4へ、収束していなければ2で得られた値$x{n+1}$を新たに$x_n$としてもう一度2を行う。 訓練データを一周していなければ2へ、一周していれば各初期値から得られた解の中から目的関数を最も小さくするものを選ぶ。   実装例 以下の目的関数を最小化させてみましょう。 $$f(x,y) = (x-2)^2 + (y-3)^2 $$ コマンドラインでpythonを実行していきます。 予想通り、(2,3)という解を導き出してくれました。目的関数が簡単だったので、初期値をどの値でとってもばっちり正解にたどり着いてくれました。 CODE 以下にRobbins monroの関数だけ置いておきます。 こちら にすべてのコードを載せています。 def Robbins_monro(function,grad,number_variable_gradient): init_learning_rate = 1.5 stepsize = 1000 init_value = np.array([range(-1000,1020,20) for i in range(number_v...

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...