スキップしてメイン コンテンツに移動

最尤推定

Introduction


今日は最尤推定について加工と思います。これは統計的推定でよく使われる手法です。最尤推定の例も書こうと思います。初めに尤度の説明をし、そのあとで最尤推定の説明をします。

概要


  • 尤度
  • 最尤推定
  • 最尤推定の問題点

尤度

前提条件から得られる観察データを考えます。この時、えられた観測データに対して前提条件が尤もらしい条件であるかの値を尤度といいます。

なにをゆっているのかわからない人がほとんどだと思います。。。
尤度の例を扱っていきます。

コインを投げることを考えます。このコインは確率Pで表、確率1-Pで裏を出すコインだとします。
例えば、100回コインを投げたとき、全て表だったとします。この時このコインが表が出る確率はかなり1に近いことが予想されます。

ではもし、表が出る確率PがP=0.5だとします。この時、表が100回連続で出る確率は$0.5^{100} = 7.88860e-31$になります。あり得ない確率ですね。これがP=0.5としたときのもっともらしさです。つまり、あまり現実的ではないということです。

もしP=0.99とするとき、100回とも表が出る確率は$0.99^{100} = 0.3666....$となります。つまり、P=0.99としたときの尤度は0.36くらいということです。よって、P=0.5よりかは現実見があることになります。まだまだ低い数字ではありますが。


観測データである、100回表が出るという事象を固定したとき、尤度はPを変数としたP(100回表|P)を尤度関数と呼びます。この関数の値を尤度と呼びます。


尤度が高いほうが尤もらしい値、つまり理にかなっているなと感じることができる値ということになります。

例えば、先ほどの例でゆうと、

P=0.5としたときの尤度は7.88860e-31でした。P=0.99としたときの尤度は0.3666でした。よってP=0.5より、P=0.99のほうが尤もらしい自然な値ということになります。


最尤推定

最尤推定とは得られた観測データからデータが依存している分布のパラメーターを推測するための手法です。
最尤推定では尤度を最大化して、最も尤もらしいパラメーターを求めます。

確率密度関数$f$と$X_1,X_2,...,X_n$が$f$に従う確率変数とします。 $$X_1,X_2, ..., X_n \sim f$$

この時、$X_1,X_2,..,X_n$が同時におこる確率は
$$\Pi_{i=1}^{N} P(X_i)$$
いわゆる同時確率です。

よって、尤度関数を次のように定義します。
$$L(\theta) = f(x_1,x_2,...,x_n|\theta)$$

この時、
$$\theta^{\star} \in \arg_{\theta} \max L(\theta)$$
$\theta$最尤推定量といいます。

そして、
$$\frac{\partial}{\partial \theta} \log L(\theta)$$
これを尤度方程式といいます。

なぜ、$\log$がいきなり登場しているのかは後の最尤推定の例で説明します。


最尤推定の例

$x_1,x_2,...,x_n \in {0,1}$について考えます。 $\forall i \in {1,2,..,n}$について、$x_i = 1$とするとき、i回目のコイン投げは表とします。$x_i$とするとき、コインは裏になったとします。

この時、尤度関数は
$$L(\theta) = P(x_1,x_2,...,x_n|\theta) = \Pi_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i}$$

$\forall i \in {1,2,..,n},  \sim p(k;\theta) = \theta^k (1-\theta)^{1-k} ~~~~\textrm{for} k \in {0,1}$

コインはベルヌーイ分布に従うので、このような形になります。
ここで、 $\theta$表が出る確率とします。

$L(\theta)$を$\theta$について最大化したいのですが、微分がかなり難しい形になっています。なぜなら$L(\theta)$について線形でないからです。つまり、$\theta$について掛け算の形になっていることが微分を難しくしています。

この問題を解決するために、$\log$を使います。
$\log$は単調増加関数なので$L(\theta)$と$\log L(\theta)$の局所解は変わりません。

よって、$\log L(\theta)$を最大化します。

\begin{eqnarray*}
\log L(\theta) &=& \log \Pi_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i} \\
&=& \sum_{i=1}^N \log \theta^{x_i} + \log (1-\theta)^{1-x_i} \\
&=& \sum_{i=1}^N  x_i \log \theta + (1-x_i)\log(1-\theta)
\end{eqnarray*}

これの微分は

\begin{eqnarray*}
\frac{\partial}{\partial \theta} \log L(\theta) &=& 0 \\
\frac{\partial}{\partial \theta} \sum_{i=1}^N x_i \log \theta + (1-x_i) \log (1-\theta) &=& 0 \\
\sum_{i=1}^N \frac{x_i}{\theta} - \frac{1-x_i}{1-\theta} &=& 0 \\
\frac{1}{\theta} \sum_{i=1}^N x_i - \frac{1}{1-\theta_i} \sum_{i=1}^N (1-x_i) &=& 0 \\
(1-\theta) \sum_{i=1}^N x_i - \theta \sum_{i=1}^N 1-x_i &=& 0 \\
\sum_{i=1}^N x_i - \theta \sum_{i=1}^N x_i - \theta \sum_{i=1}^N 1 + \theta \sum_{i=1}^N x_i &=& 0 \\
\sum_{i=1}^N x_i - n \theta &=& 0 \\
\theta &=& \frac{\sum_{i=1}^N }{n} \\
\end{eqnarray*}

この最適解は$x_1,x_2,..,x_n$の平均を表していることがわかります。
もし、コインが100回表、裏が0回だった時、最尤推定により、得た$\theta$の値は$\theta=1$
また、コインが50回表、裏が50回であれば、最尤推定により、得られた$\theta$の値は$\theta = 0.5$

最尤推定の問題点

最尤推定には問題点もあります。例えば、先ほどみたとおり、100回表がでて、裏が0解の時、$\theta=1$とするのが尤もらしいという結果が最尤推定から得られました。

ただ、もし3回表がでて、0回裏が出たとき、この時の最尤推定量も$\theta=1$となってします。しかし、3回表が出たからと言って、コインの表が出る確率が1と考えるのはあまりに危険すぎます。


つまり、観測データが少ない場合は最尤推定の結果はあまり信用できません。


Reference

https://ja.wikipedia.org/wiki/%E5%B0%A4%E5%BA%A6%E9%96%A2%E6%95%B0

コメント

  1. 対数尤度をさらに変形していくと確率モデルの分布をデータの出現頻度の分布(経験分布)に近づけるって話にももっていけますよねー。

    返信削除
    返信
    1. コメントありがとうございます!
      すいません。勉強不足で、よろしければご教授していただけないでしょうか?

      削除
  2. このコメントは投稿者によって削除されました。

    返信削除

コメントを投稿

このブログの人気の投稿

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

カーネルk-meansの実装

Introduction   English ver 今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。 ここのpdf を主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。 また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。 #  理論編書きました。K-means 理論編 概要 dataset   ちょっとだけ理論の説明  k-means    kernel k-means   Dataset   English ver 今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。 一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。 二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。   this page にデータセットを作ったコードを載せています。 ちょっとだけ理論の説明 k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かな...

Bayes' theorem

Introduction sorry, this page is Japanese only.   今回はベイズの定理について書こうと思います。 ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。 ベイズの定理 ベイズの定理とは 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率) 確率P(B):事象Aが起こる前の事象Bの確率(事前確率) とするとき以下が成り立つことを示しています。 $$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$ 例 例えば、次のように事象A、事象Bwo定義します。 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。) 確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。 確率P(A|B)が低い時を考えてみましょう。 つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。 ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。 つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuber...