スキップしてメイン コンテンツに移動

最尤推定

Introduction


今日は最尤推定について加工と思います。これは統計的推定でよく使われる手法です。最尤推定の例も書こうと思います。初めに尤度の説明をし、そのあとで最尤推定の説明をします。

概要


  • 尤度
  • 最尤推定
  • 最尤推定の問題点

尤度

前提条件から得られる観察データを考えます。この時、えられた観測データに対して前提条件が尤もらしい条件であるかの値を尤度といいます。

なにをゆっているのかわからない人がほとんどだと思います。。。
尤度の例を扱っていきます。

コインを投げることを考えます。このコインは確率Pで表、確率1-Pで裏を出すコインだとします。
例えば、100回コインを投げたとき、全て表だったとします。この時このコインが表が出る確率はかなり1に近いことが予想されます。

ではもし、表が出る確率PがP=0.5だとします。この時、表が100回連続で出る確率は$0.5^{100} = 7.88860e-31$になります。あり得ない確率ですね。これがP=0.5としたときのもっともらしさです。つまり、あまり現実的ではないということです。

もしP=0.99とするとき、100回とも表が出る確率は$0.99^{100} = 0.3666....$となります。つまり、P=0.99としたときの尤度は0.36くらいということです。よって、P=0.5よりかは現実見があることになります。まだまだ低い数字ではありますが。


観測データである、100回表が出るという事象を固定したとき、尤度はPを変数としたP(100回表|P)を尤度関数と呼びます。この関数の値を尤度と呼びます。


尤度が高いほうが尤もらしい値、つまり理にかなっているなと感じることができる値ということになります。

例えば、先ほどの例でゆうと、

P=0.5としたときの尤度は7.88860e-31でした。P=0.99としたときの尤度は0.3666でした。よってP=0.5より、P=0.99のほうが尤もらしい自然な値ということになります。


最尤推定

最尤推定とは得られた観測データからデータが依存している分布のパラメーターを推測するための手法です。
最尤推定では尤度を最大化して、最も尤もらしいパラメーターを求めます。

確率密度関数$f$と$X_1,X_2,...,X_n$が$f$に従う確率変数とします。 $$X_1,X_2, ..., X_n \sim f$$

この時、$X_1,X_2,..,X_n$が同時におこる確率は
$$\Pi_{i=1}^{N} P(X_i)$$
いわゆる同時確率です。

よって、尤度関数を次のように定義します。
$$L(\theta) = f(x_1,x_2,...,x_n|\theta)$$

この時、
$$\theta^{\star} \in \arg_{\theta} \max L(\theta)$$
$\theta$最尤推定量といいます。

そして、
$$\frac{\partial}{\partial \theta} \log L(\theta)$$
これを尤度方程式といいます。

なぜ、$\log$がいきなり登場しているのかは後の最尤推定の例で説明します。


最尤推定の例

$x_1,x_2,...,x_n \in {0,1}$について考えます。 $\forall i \in {1,2,..,n}$について、$x_i = 1$とするとき、i回目のコイン投げは表とします。$x_i$とするとき、コインは裏になったとします。

この時、尤度関数は
$$L(\theta) = P(x_1,x_2,...,x_n|\theta) = \Pi_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i}$$

$\forall i \in {1,2,..,n},  \sim p(k;\theta) = \theta^k (1-\theta)^{1-k} ~~~~\textrm{for} k \in {0,1}$

コインはベルヌーイ分布に従うので、このような形になります。
ここで、 $\theta$表が出る確率とします。

$L(\theta)$を$\theta$について最大化したいのですが、微分がかなり難しい形になっています。なぜなら$L(\theta)$について線形でないからです。つまり、$\theta$について掛け算の形になっていることが微分を難しくしています。

この問題を解決するために、$\log$を使います。
$\log$は単調増加関数なので$L(\theta)$と$\log L(\theta)$の局所解は変わりません。

よって、$\log L(\theta)$を最大化します。

\begin{eqnarray*}
\log L(\theta) &=& \log \Pi_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i} \\
&=& \sum_{i=1}^N \log \theta^{x_i} + \log (1-\theta)^{1-x_i} \\
&=& \sum_{i=1}^N  x_i \log \theta + (1-x_i)\log(1-\theta)
\end{eqnarray*}

これの微分は

\begin{eqnarray*}
\frac{\partial}{\partial \theta} \log L(\theta) &=& 0 \\
\frac{\partial}{\partial \theta} \sum_{i=1}^N x_i \log \theta + (1-x_i) \log (1-\theta) &=& 0 \\
\sum_{i=1}^N \frac{x_i}{\theta} - \frac{1-x_i}{1-\theta} &=& 0 \\
\frac{1}{\theta} \sum_{i=1}^N x_i - \frac{1}{1-\theta_i} \sum_{i=1}^N (1-x_i) &=& 0 \\
(1-\theta) \sum_{i=1}^N x_i - \theta \sum_{i=1}^N 1-x_i &=& 0 \\
\sum_{i=1}^N x_i - \theta \sum_{i=1}^N x_i - \theta \sum_{i=1}^N 1 + \theta \sum_{i=1}^N x_i &=& 0 \\
\sum_{i=1}^N x_i - n \theta &=& 0 \\
\theta &=& \frac{\sum_{i=1}^N }{n} \\
\end{eqnarray*}

この最適解は$x_1,x_2,..,x_n$の平均を表していることがわかります。
もし、コインが100回表、裏が0回だった時、最尤推定により、得た$\theta$の値は$\theta=1$
また、コインが50回表、裏が50回であれば、最尤推定により、得られた$\theta$の値は$\theta = 0.5$

最尤推定の問題点

最尤推定には問題点もあります。例えば、先ほどみたとおり、100回表がでて、裏が0解の時、$\theta=1$とするのが尤もらしいという結果が最尤推定から得られました。

ただ、もし3回表がでて、0回裏が出たとき、この時の最尤推定量も$\theta=1$となってします。しかし、3回表が出たからと言って、コインの表が出る確率が1と考えるのはあまりに危険すぎます。


つまり、観測データが少ない場合は最尤推定の結果はあまり信用できません。


Reference

https://ja.wikipedia.org/wiki/%E5%B0%A4%E5%BA%A6%E9%96%A2%E6%95%B0

コメント

  1. 対数尤度をさらに変形していくと確率モデルの分布をデータの出現頻度の分布(経験分布)に近づけるって話にももっていけますよねー。

    返信削除
    返信
    1. コメントありがとうございます!
      すいません。勉強不足で、よろしければご教授していただけないでしょうか?

      削除
  2. このコメントは投稿者によって削除されました。

    返信削除

コメントを投稿

このブログの人気の投稿

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...