スキップしてメイン コンテンツに移動

最尤推定

Introduction


今日は最尤推定について加工と思います。これは統計的推定でよく使われる手法です。最尤推定の例も書こうと思います。初めに尤度の説明をし、そのあとで最尤推定の説明をします。

概要


  • 尤度
  • 最尤推定
  • 最尤推定の問題点

尤度

前提条件から得られる観察データを考えます。この時、えられた観測データに対して前提条件が尤もらしい条件であるかの値を尤度といいます。

なにをゆっているのかわからない人がほとんどだと思います。。。
尤度の例を扱っていきます。

コインを投げることを考えます。このコインは確率Pで表、確率1-Pで裏を出すコインだとします。
例えば、100回コインを投げたとき、全て表だったとします。この時このコインが表が出る確率はかなり1に近いことが予想されます。

ではもし、表が出る確率PがP=0.5だとします。この時、表が100回連続で出る確率は$0.5^{100} = 7.88860e-31$になります。あり得ない確率ですね。これがP=0.5としたときのもっともらしさです。つまり、あまり現実的ではないということです。

もしP=0.99とするとき、100回とも表が出る確率は$0.99^{100} = 0.3666....$となります。つまり、P=0.99としたときの尤度は0.36くらいということです。よって、P=0.5よりかは現実見があることになります。まだまだ低い数字ではありますが。


観測データである、100回表が出るという事象を固定したとき、尤度はPを変数としたP(100回表|P)を尤度関数と呼びます。この関数の値を尤度と呼びます。


尤度が高いほうが尤もらしい値、つまり理にかなっているなと感じることができる値ということになります。

例えば、先ほどの例でゆうと、

P=0.5としたときの尤度は7.88860e-31でした。P=0.99としたときの尤度は0.3666でした。よってP=0.5より、P=0.99のほうが尤もらしい自然な値ということになります。


最尤推定

最尤推定とは得られた観測データからデータが依存している分布のパラメーターを推測するための手法です。
最尤推定では尤度を最大化して、最も尤もらしいパラメーターを求めます。

確率密度関数$f$と$X_1,X_2,...,X_n$が$f$に従う確率変数とします。 $$X_1,X_2, ..., X_n \sim f$$

この時、$X_1,X_2,..,X_n$が同時におこる確率は
$$\Pi_{i=1}^{N} P(X_i)$$
いわゆる同時確率です。

よって、尤度関数を次のように定義します。
$$L(\theta) = f(x_1,x_2,...,x_n|\theta)$$

この時、
$$\theta^{\star} \in \arg_{\theta} \max L(\theta)$$
$\theta$最尤推定量といいます。

そして、
$$\frac{\partial}{\partial \theta} \log L(\theta)$$
これを尤度方程式といいます。

なぜ、$\log$がいきなり登場しているのかは後の最尤推定の例で説明します。


最尤推定の例

$x_1,x_2,...,x_n \in {0,1}$について考えます。 $\forall i \in {1,2,..,n}$について、$x_i = 1$とするとき、i回目のコイン投げは表とします。$x_i$とするとき、コインは裏になったとします。

この時、尤度関数は
$$L(\theta) = P(x_1,x_2,...,x_n|\theta) = \Pi_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i}$$

$\forall i \in {1,2,..,n},  \sim p(k;\theta) = \theta^k (1-\theta)^{1-k} ~~~~\textrm{for} k \in {0,1}$

コインはベルヌーイ分布に従うので、このような形になります。
ここで、 $\theta$表が出る確率とします。

$L(\theta)$を$\theta$について最大化したいのですが、微分がかなり難しい形になっています。なぜなら$L(\theta)$について線形でないからです。つまり、$\theta$について掛け算の形になっていることが微分を難しくしています。

この問題を解決するために、$\log$を使います。
$\log$は単調増加関数なので$L(\theta)$と$\log L(\theta)$の局所解は変わりません。

よって、$\log L(\theta)$を最大化します。

\begin{eqnarray*}
\log L(\theta) &=& \log \Pi_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i} \\
&=& \sum_{i=1}^N \log \theta^{x_i} + \log (1-\theta)^{1-x_i} \\
&=& \sum_{i=1}^N  x_i \log \theta + (1-x_i)\log(1-\theta)
\end{eqnarray*}

これの微分は

\begin{eqnarray*}
\frac{\partial}{\partial \theta} \log L(\theta) &=& 0 \\
\frac{\partial}{\partial \theta} \sum_{i=1}^N x_i \log \theta + (1-x_i) \log (1-\theta) &=& 0 \\
\sum_{i=1}^N \frac{x_i}{\theta} - \frac{1-x_i}{1-\theta} &=& 0 \\
\frac{1}{\theta} \sum_{i=1}^N x_i - \frac{1}{1-\theta_i} \sum_{i=1}^N (1-x_i) &=& 0 \\
(1-\theta) \sum_{i=1}^N x_i - \theta \sum_{i=1}^N 1-x_i &=& 0 \\
\sum_{i=1}^N x_i - \theta \sum_{i=1}^N x_i - \theta \sum_{i=1}^N 1 + \theta \sum_{i=1}^N x_i &=& 0 \\
\sum_{i=1}^N x_i - n \theta &=& 0 \\
\theta &=& \frac{\sum_{i=1}^N }{n} \\
\end{eqnarray*}

この最適解は$x_1,x_2,..,x_n$の平均を表していることがわかります。
もし、コインが100回表、裏が0回だった時、最尤推定により、得た$\theta$の値は$\theta=1$
また、コインが50回表、裏が50回であれば、最尤推定により、得られた$\theta$の値は$\theta = 0.5$

最尤推定の問題点

最尤推定には問題点もあります。例えば、先ほどみたとおり、100回表がでて、裏が0解の時、$\theta=1$とするのが尤もらしいという結果が最尤推定から得られました。

ただ、もし3回表がでて、0回裏が出たとき、この時の最尤推定量も$\theta=1$となってします。しかし、3回表が出たからと言って、コインの表が出る確率が1と考えるのはあまりに危険すぎます。


つまり、観測データが少ない場合は最尤推定の結果はあまり信用できません。


Reference

https://ja.wikipedia.org/wiki/%E5%B0%A4%E5%BA%A6%E9%96%A2%E6%95%B0

コメント

  1. 対数尤度をさらに変形していくと確率モデルの分布をデータの出現頻度の分布(経験分布)に近づけるって話にももっていけますよねー。

    返信削除
    返信
    1. コメントありがとうございます!
      すいません。勉強不足で、よろしければご教授していただけないでしょうか?

      削除
  2. このコメントは投稿者によって削除されました。

    返信削除

コメントを投稿

このブログの人気の投稿

グラフ理論

Introduction sorry, this page is Japanese only. いよいよ私も三回生になり、グラフ理論の授業が始まりました。ということで、グラフ理論の基本的な定義を書いていこうと思います。 最後に説明する隣接行列については実装を行いましたので、以下の記事もよろしければご覧ください。 隣接行列の実装 グラフのイメージ グラフ理論のグラフとは高校数学で習う二次関数などとは違います。 例えば駅などを創造してください。各駅間に線路が通っていますね。このような、駅、線路の集まりのことをグラフといいます。次の絵で確認してもらえるとイメージしやすいかと思います。 このようなものをグラフといいます。グラフは二点間がどうつながっているかだけを保存し、実際の距離や位置関係は保存しません。 このような向きのない(各駅を行き来でき、一方通行ではない)グラフを無向グラフをいいます。反対に向きのある(一方通行しかできない)グラフを有向グラフといいます。 グラフの定義 グラフではある空でない集合E,Vを考えます。Eの要素をedge(辺)、Vの要素をvertex(頂点)といいます。 ここで以下のような写像を考えます。 $$g:E \rightarrow V \times V$$ この時(E,V,g)で定義される空でない空間のことをグラフといいます。 写像で捉えるグラフ 写像gというのは、Eの要素、つまり辺を対応する(始点、終点)というV×Vの集合の要素に送ります。gは写像ですので、写像の定義より、Eのどの要素の始点と終点が対応していることになります。つまり、辺がどこにもつながっていないということはあり得ません。反対にすべてのV×Vの要素がEの要素のどれかに対応しているのであればgは全射になります。 隣接行列 隣接行列とはどのvertexと、どのvertexがつながっているかを行列で表します。例を見るのが理解するのには早いと思うので、例を挙げて説明します。 上のグラフのイメージで出てきたグラフの例を考えましょう。隣接行列は以下のようになります。 $$ \[  adj = \left( \begin{array}{cccccc} 0 &

Entropy

Introduction sorry, this page is Japanese only.   今日はエントロピーについて書こうと思います。これは確率論や統計学で死ぬほど大事なKLダイバージェンスといものを理解するために必要な知識です。 この記事ではエントロピーについてしか書きませんが、今度KLダイバージェンスについても書こうと思います。 KLダイバージェンスの記事はこちら Entropy 直観的な話 ある事象、「例えば明日大学の講義にX分遅刻する」という事象を考えます。 この事象に対する確率がP(X)が与えられているとしましょう。P(1)は一分遅刻する確率です。この時確率分布P(X)が持つ情報量はどれだけのものかとうことを考えたいとします。 明日の講義はテストを受けるとします。そのテストを受けないと単位を落としてしまします。しかし、テスト前日はすごく寝不足としましょう。遅刻する確率が99パーセントとわかった時、ほとんどどうあがいても遅刻するのであれば単位を落とすのはほぼ確実といえます。 よって前日に徹夜で勉強するよりも、睡眠不足を解消するために寝る方がよっぽど効率的であることがわかります。しかし、遅刻をする確率が50パーセントとわかった時、前日にテスト勉強をすればよいのか、せずに睡眠をとればよいのかわかりません。このように、確率が偏っているほど何が起こるか予測しやすく、対策を立てやすいのです。遅刻する確率が99パーセントとわかる時は遅刻する確率が50パーセントとわかった時に比べて圧倒的に多いはずです。 確率P(X)に対してこの情報量のことをP(X)の 自己エントロピー といいます。 そして、自己エントロピーの期待値のことを 平均エントロピー といいます。 立式 性質 ではこの情報量を数式で表していきましょう。まず自己エントロピーには大事な性質が二つあります。それが 互いに独立な確率変数の自己エントロピーはそれぞれの情報量の和で表される。 自己エントロピーは減少関数である。 の二つです。 自己エントロピーの加法性 互いに独立な確率変数の情報慮はそれぞれの情報量の和でなければいけません。例えば「明日の講義がY分早く終わる」という事象を考えます。この確率変数Yはあなたが何分講義に遅刻しようが

二次元空間の直線

Introduction English ver 今日は、次の定理を証明します。 二次元空間の直線は次のように表せる \[\{x|<x,v> = 0\}\] ただし、vは直線に直行し、ゼロでないベクトルとします。 証明 \[\forall k \in \{x|<x,v> = 0\},\] \[<k,v> = 0\] k と vは二次元空間のベクトルなので、それぞれのベクトルは次のように表せます。 \[k = (k_1,k_2)\] \[v = (v_1,v_2)\] よって \(<k,v>=k_1v_1 + k_2v_2=0\) 方程式を\(k_2\)について解くと \[k_2 = -\frac{v_1}{v_2} k_1\] これはまさしく、傾き\(-\frac{v_1}{v_2}\)の直線です。 Q.E.D