スキップしてメイン コンテンツに移動

MAP推定

Introduction

今日はMAP推定(事後確率最大化法)について書きました。MAP推定ではベイズの定理を使います。データが少ないとき、最尤推定の結果をあまり信用できない話は、最尤推定の時に書きました。この時、MAP推定では自分の事前に持っている情報を取り入れることができます。


概要

  • ベイズの定理
  • MAP推定
  • 共役分布
  • MAP推定の例



ベイズの定理
ベイズの定理は
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$
です。

ただし、
$P(A|B)$ はBが起こった時のAの起こる確率です。
詳しくは http://takutori.blogspot.com/2018/04/bayes-theorem.html を見てください。

Map推定
MAP推定ではベイズの定理を使います。MAP推定は事後確率が最大になるようなパラメータを選びます。
いま、$x_1,x_2,...,x_n$というデータを$\theta$というパラメータを持つ分布から得られたとする。この時$P(\theta|x_1,x_2,...,x_n)$を求めたい。

ここで、ベイズの定理を使う。
$$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}$$

ここで、$P(\theta)$は$\theta$の事前分布である。

$x_1,x_2,...,x_n$はそれぞれ独立であるので、
$$P(x_1,x_2,...,x_n | \theta ) = \Pi_{i=1}^n P(x_i|\theta)$$.

よって、マップ推定は
$$\theta^{\star} = \arg \max_{\theta} \frac{\Pi_{i=1}^n P(x_i|\theta) P(\theta)}{P(x_1,x_2,...,x_n)}$$
となる。
$P(x_1,x_2,...,x_n)$という値は$\theta$には依存しない。よって、定数であり、最適化に定数は関係ないので、排除すると、MAP推定は次のようになる。

$$\theta^{\star} = \arg \max_{\theta}\Pi_{i=1}^n P(x_i|\theta) P(\theta)$$


共役分布
共役分布とはある便利な分布です。どう便利なのかを簡単に説明します。一般的に事後分布は複雑な形をしている。しかし、共役分布と呼ばれる分布を事前分布に用いることで、事後分布の計算が簡単になる。 事前分布は尤度関数、つまり、 $P(x_i|\theta)$に依存して決まる。有名な分布に対する共役分布は以下のようになっている。


ABC
1
Conjugate distribution
likelihood
posterior distribution
2
betaBernoullibeta
3
betaBinomialbeta
4
GaussianGaussian(sigma is known)Gaussian
5
inverse gamma
Gaussian(sigma is unknown)
inverse gamma
6
gammaPoissongamma

.

$$ Beta(\theta|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\theta^{a-1}(1-\theta)^{b-1} $$
これはベータ分布と呼ばれる確率分布です。この分布をMAP推定するとき、事前分布にはガンマ分布を使う。ここで、

$$ \Gamma(x) = \int_0^\infty u^{x-1}e^{-u}du $$
である。

事前分布と尤度関数の積は


$$P(\theta|D) = P(D|\theta)P(\theta)$$
$$=\Pi_{i=1}^{n}\theta^{x_i}(1-\theta)^{1-x_i}\frac{\Gamma(a+b}{\Gamma(a)\Gamma(b)}\theta^{a-1}(1-\theta)^{b-1}$$
となる。


$x_i$is $1~or~0$であるので、
$$ p(x=1,\theta)p(x=1,\theta)p(x=,\theta) =\theta\theta(1-\theta) $$.
よって、
$$ \Pi_{i=1}^{n}\theta^{x_i}(1-\theta)^{x_i} = \theta^{\sum_{i=1}^{n}x_i}(1-\theta)^{\sum_{i=1}^{n}(1-x_i)} $$
$P(\theta|D)$は
$$P(\theta|D) = \theta^{\sum_{i=1}^{n}x_i}(1-\theta)^{\sum_{i=1}^{n}(1-x_i)}\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\theta^{a-1}(1-\theta)^{b-1} $$
$$= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\theta^{(\sum_{i=1}^{n}x_i)+a-1}(1-\theta)^{(\sum_{i=1}^{n}(1-x_i))+b-1}$$
となる。よって、
$$P(\theta|D) \propto \theta^{(\sum_{i=1}^{n}x_i)+a-1}(1-\theta)^{(\sum_{i=1}^{n}(1-x_i))+b-1}$$

この最適化は$\log$を使うことによって、解ける。

$$\log P(\theta|D) \propto \{(\sum_{i=1}^{n}x_i)+a-1\}\log \theta + \{(\sum_{i=1}^{n}(1-x_i))+b-1\}\log (1-\theta) \nonumber$$

$$ \sum_{i=1}^{n}x_i + \sum_{i=1}^{n}(1-x_i) = n $$なので、 最適解は
$$ \theta_{MAP} = \frac{(\sum_{i=!}^{n}x_i)+a-1}{n+a+b-2} $$


Reference

コメント

このブログの人気の投稿

MAP estimation

Introduction 日本語 ver Today, I will explain MAP estimation(maximum a posteriori estimation). MAP estimation is used Bayes' thorem. If sample data is few, we can not belive value by Maximum likelihood estimation. Then, MAP estimation is enable to include our sense.  Overveiw Bayes' theorem MAP estimation Conjugate distribution Bayes' theorem  Bayes' theorem is $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ $P(A|B)$ is Probability when B occur. Please go on  http://takutori.blogspot.com/2018/04/bayes-theorem.html to know detail of Bayes' theorem. Map estimation Map estimation is used Bayes' theorem. Map estimation estimate parameter of population by maximuzing posterior probability. Now, suppoce we get data $x_1,x_2,...,x_n$ from population which have parameter $\theta$. Then, we want to $P(\theta|x_1,x_2,...,x_n)$. Here, we use Bayes' theorem. $$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}...

Implementation of Robbins monro

Robbins monro の実装 sorry, this page is Japanese only.   今回はRobbins monro の実装をしてみました。 Robbins monroは確率勾配降下法の学習率を入りテーション回数の逆数で割っていくものです。 使っているprogram言語はpython 3です。osはwindowsです。(macほしい...) アルゴリズム 確率勾配降下方とは目的関数の最適解を求めるアルゴリズムです。目的関数をf(X)とすると、手順は以下のようになっています。 初期学習率$n_0$を決めます。訓練データDを用意します。この訓練データは複数の初期値の集まりです。 訓練データから一つ初期値をランダムに取り出し、これを$x_0$とし、最初の予測値とします。 次の式に現在の予測値$x_0$を代入し、新たな予測値$x_{n+1}$を得ます。$$x_{n+1} = x_{n} - \frac{n_0}{n} grad f(X_n)$$ 収束して入れば4へ、収束していなければ2で得られた値$x{n+1}$を新たに$x_n$としてもう一度2を行う。 訓練データを一周していなければ2へ、一周していれば各初期値から得られた解の中から目的関数を最も小さくするものを選ぶ。   実装例 以下の目的関数を最小化させてみましょう。 $$f(x,y) = (x-2)^2 + (y-3)^2 $$ コマンドラインでpythonを実行していきます。 予想通り、(2,3)という解を導き出してくれました。目的関数が簡単だったので、初期値をどの値でとってもばっちり正解にたどり着いてくれました。 CODE 以下にRobbins monroの関数だけ置いておきます。 こちら にすべてのコードを載せています。 def Robbins_monro(function,grad,number_variable_gradient): init_learning_rate = 1.5 stepsize = 1000 init_value = np.array([range(-1000,1020,20) for i in range(number_v...