Introduction English ver 今日は最尤推定について加工と思います。これは統計的推定でよく使われる手法です。最尤推定の例も書こうと思います。初めに尤度の説明をし、そのあとで最尤推定の説明をします。 概要 尤度 最尤推定 最尤推定の問題点 尤度 前提条件から得られる観察データを考えます。この時、えられた観測データに対して前提条件が尤もらしい条件であるかの値を尤度といいます。 なにをゆっているのかわからない人がほとんどだと思います。。。 尤度の例を扱っていきます。 コインを投げることを考えます。このコインは確率Pで表、確率1-Pで裏を出すコインだとします。 例えば、100回コインを投げたとき、全て表だったとします。この時このコインが表が出る確率はかなり1に近いことが予想されます。 ではもし、表が出る確率PがP=0.5だとします。この時、表が100回連続で出る確率は$0.5^{100} = 7.88860e-31$になります。あり得ない確率ですね。これがP=0.5としたときのもっともらしさです。つまり、あまり現実的ではないということです。 もしP=0.99とするとき、100回とも表が出る確率は$0.99^{100} = 0.3666....$となります。つまり、P=0.99としたときの尤度は0.36くらいということです。よって、P=0.5よりかは現実見があることになります。まだまだ低い数字ではありますが。 観測データである、100回表が出るという事象を固定したとき、尤度はPを変数としたP(100回表|P)を尤度関数と呼びます。この関数の値を尤度と呼びます。 尤度が高いほうが尤もらしい値、つまり理にかなっているなと感じることができる値ということになります。 例えば、先ほどの例でゆうと、 P=0.5としたときの尤度は7.88860e-31でした。P=0.99としたときの尤度は0.3666でした。よってP=0.5より、P=0.99のほうが尤もらしい自然な値ということになります。 最尤推定 最尤推定とは得られた観測データからデータが依存している分布のパラメーターを推測するための手法です。 最尤推定では尤度を最大化して、最も尤もらしいパラメーターを求めます。 確率密度関数...
This blog is my learning memo. I write post about ML, math, programing, other. Please click slidebar icon to look for post by contents. content name of post written by Japanese is written Japanese. content name of post written by English is written English. Please look at my post to enjoy and learn ML.
github link 飛べへんなってるで
返信削除まじで、ありがとう、直しとく
削除