Processing math: 0%
スキップしてメイン コンテンツに移動

Discrete Fourier transform

Introduction

I will write about Discrete Fourier transform. Discrete Fourier transform is
Abbreviated DFT.


I am making pdf about Audio Signal Processing. I publish pdf at github.
However, I write tex in Japanese.

I take a lecture about the signal processing.
There is lecture at thie page.

I update this pdf.


コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータXを例えば次のように線形分離できるように\phi(x)に送る写像\phiを考えます。 カーネルは次のように定義されます。 K(x,y) = \phi(x)^T \phi(y) \phiを具体的に計算することは難しいですが、K(x,y)を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2 ここで、 プロトタイプは\mu_i ~\forall k \in Kとしま...

変分法の可視化

Introduction English ver 今日は、変分法の可視化を実装しました。変分法は、汎関数を最小化させるために使われます。汎関数とは、関数の関数のようなものです。変分法については、  [1] , [2] , [3] , [5] ,  [6] などを参考にしてください。 概要 汎関数 実装 可視化 汎関数 今回は、次のような汎関数を使います。 F(x) = \sqrt{1+(\frac{du}{dx}(x))^2} l(u) = \int_{0}^{1} \sqrt{1+(\frac{du}{dx}(x))^2} dx l(u)はu(x)という曲線の長さです。.  u(0)=a and u(1)=bという制約のもと、l(u)を最小化したいといます。 最適なl(u)u(x) = (b-a)x+a となります。 (0,a) から (1,b)への直線になっているのがわかります。 これは、l(u)uの曲線の長さなので、これを最小化するためには直線が一番であることが直観的にわかります。 変分法での導出は、 [5] を参考にしてください。 実装 変分法における最適な曲線とそうでない曲線の違いを可視化する実装をしました。 u_Au_A = (b-a)x+a + A sin(8t) とします。 A sin(8t)uから話す役割を持ちます。. A \in [0,0.5]であり、もしA=0であれば、u_A=uです。 github でcodeを公開しています。 可視化 上側の画像はu_A(x)を表しています。下側の画像はl(u_A)の値を表しています。 u_A(x)uに近づくほど、l(u_A)が小さくなることがわかります。 Reference [1] http://www2.kaiyodai.ac.jp/~takenawa/optimization/resume10-4.pdf [2] http://hooktail.sub.jp/mathInPhys/brach...

Mahalanobis' Distance

Introduction 日本語 ver Today, I will write about Mahalanobis’ Distance. Mahalanobis’ Distance is used when each dimension has a relationship. This distance is fulfilled definition of distance. Mahalanobis’ Distance is important for Statics. If you interested in Statics or Machine Learning, Please see my this blog. Overview definition of distance deficition of Mahalanobis’ Distance image of Mahalanobis’ Distance definition of distance if d is distance function, d if fulfilled following condtion. d:X \times X -> R d(x,y) \geq 0 d(x,y) = 0 \leftrightarrow x = y d(x,y) = d(y,x) d(x,z) \leq d(x,y) + d(y,z) Mahalanobis’ Distance Mahalanobis’ Distance is distance function. Mahalanobis’ Distance is defined by following from D_{M}(x) = \sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)} here, \mu is mean vector \mu = (\mu_1,\mu_2,....,\mu_n) and, \Sigma is variance-convariance matrix. Mahalanobis’ Distance between x and y is \begin{eqnarray...