スキップしてメイン コンテンツに移動

ロジスティック回帰 理論編

Introduction


今日はロジスティック回帰について書こうと思います。ロジスティック回帰は機械学習の中でも基本とされています。ロジスティック回帰は二値を分類するためのアルゴリズム、モデルです。

概要

この記事はPRMLを参考に書かせていただいています。
最適化には反復再重みづけ最小二乗法を用いています。
  • シグモイド関数
  • 分類のための確率を定義
  • 交差エントロピー誤差関数
  • 反復再重みづけ最小二乗法

シグモイド関数

初めにシグモイド関数を定義します。
以下のような関数です。
\[\sigma(a) = \frac{1}{1+\exp(a)}\]
後に扱うので、シグモイド関数の微分を計算しておきます。きれいな形をしています。
\begin{eqnarray*} \frac{d}{d a} \frac{1}{1+\exp(a)} &=& \frac{\exp(-a)}{(1+\exp(-a))^2} \\ &=& \frac{1}{1+\exp(-a)} \frac{\exp(-a)}{1+\exp(-a)}\\ &=& \frac{1}{1+\exp(-a)} \{ \frac{1+\exp(-a)}{1+\exp(-a)} - \frac{1}{1+\exp(-a)} \} \\ &=& \sigma(a)(1-\sigma(a)) \end{eqnarray*}
シグモイド関数は機械学習において大事な役割を果たしています。
シグモイド関数は以下のような形をしています。
enter image description here
これを見てわかる通り、シグモイド関数は次のような性質を持っています。
  • シグモイド関数は 定義域は\((-\infty,\infty)\)で定義され、値域は\((0,1)\)で定義されています
  • シグモイド関数は単調増加関数です
  • シグモイド関数は(0,0.5)で点対称です
シグモイド関数の値を確率として考えることができるようになります。

分類のための確率の定義

初めにデータが正しく分類されたかの確率を考えてみる。
enter image description here
この直線は超平面だと思ってください。
超平面は以下のように表されます。
\[w^T x= 0\]
wは超平面に対する法線ベクトルになります。
  • \(w^T x > 0\)の時\(x\)は赤い領域にいる
  • \(w^T x < 0\)の時\(x\)は青い領域にいる
もし、データ点が赤い領域に属しているのならそのデータ点のクラスは\(C_1\).
また、データ点が青い領域に属しているのならそのデータ点のクラスは\(C_2\)
\(C_1\) は1を \(C_2\)は0をそれぞれラベルとして持っています。
私たちは、超平面から遠いデータ点ほど分類の結果に確信を持てます。
しかし、超平面に近いデータ点は必ずしもそうではないですよね。
超平面に近いデータ点に割り当てられたクラスはそんなに信用できない。
よって、シグモイド関数の性質を使う時が来た。超平面からデータポイントまでの距離を確率としてみましょう。
  • 確率が0.5を超えているとき\((C_1)\)のクラスに属しているとみなす。
  • 確率が0.5の時、どちらのクラスに属しているかはわからない。(データ点が超平面上にあることをさす。)
  • 確率が0.5を超えないとき、\((C_2)\) のクラスに属しているとみなす。
これをシグモイド関数を用いることで実現します。
シグモイド関数はこれらの性質をうまく実現してくれます。
よって、距離をシグモイド関数にいれた値を確率として扱います。

交差エントロピー誤差関数

データ集合が \(\{\phi_n,t_n\}\)で与えられているとき、 確率を次のように考えます。
\[\sigma(w^T \phi_n)\]
この確率に対する尤度関数を考えます。
\[p(t|w) = \Pi_{n=1}^{N} y_{n}^{t_n} \{1-y_n\}^{1-t_n}\]
ただし、
\[y_n = \sigma(w^T \phi_n) \]
\[t = (t_1,t_2,,,t_n)^T\]
y_n は\(\phi_n\) が\(C_1\) に属している確率です。
この尤度関数の負の対数をとると、対数の性質から次のようになります。
\[E(w) = -\log p(t|w) = - \sum_{n=1}^{N} \{t_n \log(y_n) + (1-t_n ) \log(1-y_n)\}\]
尤度関数の最大化は、この\(E(w)\)の最小化と同値になります。(対数は単調増加関数のため、最適解が変わらない)
\(E(w)\) は交差エントロピー誤差関数とゆわれています。

IRLS

IRLS は反復再重みづけ最小二乗のことです。最適化のためのこのアルゴリズムではニュートン法が用いられています。
E(w)を\(w\)について微分しましょう。
\begin{eqnarray*} \nabla E(w) &=& \nabla - \sum_{n=1}^{N} \{t_n \log(y_n) + (1-t_n ) \log(1-y_n)\}\\ &=& \nabla - \sum_{n=1}^{N} \{t_n \log(\sigma(w^T \phi_n) + (1-t_n ) \log(1-\sigma(w^T \phi_n)\}\\ &=&-\sum_{n=1}^{N} \{ \frac{t_n \sigma(w^T \phi_n)(1-\sigma(w^T \phi_n))}{\sigma(w^T \phi_n)}\phi_n - \frac{(1-t_n) \sigma(w^T \phi_n)(1-\sigma(w^T \phi_n))}{1-\sigma(w^T \phi_n)}\phi_n \}\\ &=& -\sum_{n=1}^{N} \frac{t_n (1-\sigma(w^T \phi_n))-(1-t_n)\sigma(w^T \phi_n)}{\sigma(w^T \phi_n) (1-\sigma(w^T \phi_n))} \{\sigma(w^T \phi_n) (1-\sigma(w^T \phi_n))\} \phi_n \\ &=& -\sum_{n=1}^{N} \{t_n (1-\sigma(w^T \phi_n))-(1-t_n)\sigma(w^T \phi_n)\} \phi_n \\ &=& -\sum_{n=1}^{N} \{t_n - t_n \sigma(w^T \phi_n) - \sigma(w^T \phi_n) - \sigma(w^T \phi_n) + t_n \sigma(w^T \phi)\} \phi_n\\ &=&\sum_{n=1}^{N} \{\sigma(w^T \phi_n) - t_n \} \phi_n\\ &=& \sum_{n=1}^{N} (y_n - t_n) \phi_n\\ &=& \phi^T (y - t)\\ \end{eqnarray*}
次に、E(w)のヘッセ行列を求めましょう。
\begin{eqnarray*} H &=& \nabla \nabla E(w) \\ &=& \nabla \phi^T(y-t) \\ &=& \nabla \sum_{n=1}^{N} \phi_{n}^T (y_n-t_n) \\ &=& \nabla\sum_{n=1}^{N} (y_n-t_n) \phi_{n}^T \\ &=&\sum_{n=1}^{N} y_n(1-y_n) \phi_n \phi^T = \phi^T R \phi \end{eqnarray*}
ここでRは対角成分に\(y_n(1-y_n)\) を持つ対角行列です。
これらの式を使うとwの更新は次のようになります。
\begin{eqnarray*} w_{new} &=& w_{old} - \{ \phi^ T R \phi \}^ {-1} \phi^T (y-t) \\ &=& \{ \phi^ T R \phi \}^ T \{ \phi^ T R \phi w_{old} - \phi^T(y-t)\} \\ &=& \{ \phi^ T R \phi \} ^ {-1} \phi^ T Rz \end{eqnarray*}
ただし、
$$z=\phi w_{old} - R^{-1}(y-t)$$

この記事ではロジスティック回帰の理論的な部分を扱いました。
次はロジスティック回帰の実装の記事を書こうと思います。
次の記事も見ていただけると嬉しいです。

*実装の記事も書きました。
Implementation of Logistic Regression


コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータ$X$を例えば次のように線形分離できるように$\phi(x)$に送る写像$\phi$を考えます。 カーネルは次のように定義されます。 $$K(x,y) = \phi(x)^T \phi(y)$$ $\phi$を具体的に計算することは難しいですが、$K(x,y)$を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 プロトタイプは$\mu_i ~\forall k \in K$としま...

MAP推定

Introduction English ver 今日はMAP推定(事後確率最大化法)について書きました。MAP推定ではベイズの定理を使います。データが少ないとき、最尤推定の結果をあまり信用できない話は、最尤推定の時に書きました。この時、MAP推定では自分の事前に持っている情報を取り入れることができます。 概要 ベイズの定理 MAP推定 共役分布 MAP推定の例 ベイズの定理 ベイズの定理は $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ です。 ただし、 $P(A|B)$ はBが起こった時のAの起こる確率です。 詳しくは  http://takutori.blogspot.com/2018/04/bayes-theorem.html  を見てください。 Map推定 MAP推定ではベイズの定理を使います。MAP推定は事後確率が最大になるようなパラメータを選びます。 いま、$x_1,x_2,...,x_n$というデータを$\theta$というパラメータを持つ分布から得られたとする。この時$P(\theta|x_1,x_2,...,x_n)$を求めたい。 ここで、ベイズの定理を使う。 $$P(\theta|x_1,x_2,...,x_n) = \frac{P(x_1,x_2,...,x_n | \theta ) P(\theta)}{P(x_1,x_2,...,x_n)}$$ ここで、$P(\theta)$は$\theta$の事前分布である。 $x_1,x_2,...,x_n$はそれぞれ独立であるので、 $$P(x_1,x_2,...,x_n | \theta ) = \Pi_{i=1}^n P(x_i|\theta)$$. よって、マップ推定は $$\theta^{\star} = \arg \max_{\theta} \frac{\Pi_{i=1}^n P(x_i|\theta) P(\theta)}{P(x_1,x_2,...,x_n)}$$ となる。 $P(x_1,x_2,...,x_n)$という値は$\theta$には依存しない。よって、定数であり、最適化に定数は関係ないので、排除すると、MAP推定は次のようになる。 $$\th...

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...