スキップしてメイン コンテンツに移動

ロジスティック回帰 理論編

Introduction


今日はロジスティック回帰について書こうと思います。ロジスティック回帰は機械学習の中でも基本とされています。ロジスティック回帰は二値を分類するためのアルゴリズム、モデルです。

概要

この記事はPRMLを参考に書かせていただいています。
最適化には反復再重みづけ最小二乗法を用いています。
  • シグモイド関数
  • 分類のための確率を定義
  • 交差エントロピー誤差関数
  • 反復再重みづけ最小二乗法

シグモイド関数

初めにシグモイド関数を定義します。
以下のような関数です。
\[\sigma(a) = \frac{1}{1+\exp(a)}\]
後に扱うので、シグモイド関数の微分を計算しておきます。きれいな形をしています。
\begin{eqnarray*} \frac{d}{d a} \frac{1}{1+\exp(a)} &=& \frac{\exp(-a)}{(1+\exp(-a))^2} \\ &=& \frac{1}{1+\exp(-a)} \frac{\exp(-a)}{1+\exp(-a)}\\ &=& \frac{1}{1+\exp(-a)} \{ \frac{1+\exp(-a)}{1+\exp(-a)} - \frac{1}{1+\exp(-a)} \} \\ &=& \sigma(a)(1-\sigma(a)) \end{eqnarray*}
シグモイド関数は機械学習において大事な役割を果たしています。
シグモイド関数は以下のような形をしています。
enter image description here
これを見てわかる通り、シグモイド関数は次のような性質を持っています。
  • シグモイド関数は 定義域は\((-\infty,\infty)\)で定義され、値域は\((0,1)\)で定義されています
  • シグモイド関数は単調増加関数です
  • シグモイド関数は(0,0.5)で点対称です
シグモイド関数の値を確率として考えることができるようになります。

分類のための確率の定義

初めにデータが正しく分類されたかの確率を考えてみる。
enter image description here
この直線は超平面だと思ってください。
超平面は以下のように表されます。
\[w^T x= 0\]
wは超平面に対する法線ベクトルになります。
  • \(w^T x > 0\)の時\(x\)は赤い領域にいる
  • \(w^T x < 0\)の時\(x\)は青い領域にいる
もし、データ点が赤い領域に属しているのならそのデータ点のクラスは\(C_1\).
また、データ点が青い領域に属しているのならそのデータ点のクラスは\(C_2\)
\(C_1\) は1を \(C_2\)は0をそれぞれラベルとして持っています。
私たちは、超平面から遠いデータ点ほど分類の結果に確信を持てます。
しかし、超平面に近いデータ点は必ずしもそうではないですよね。
超平面に近いデータ点に割り当てられたクラスはそんなに信用できない。
よって、シグモイド関数の性質を使う時が来た。超平面からデータポイントまでの距離を確率としてみましょう。
  • 確率が0.5を超えているとき\((C_1)\)のクラスに属しているとみなす。
  • 確率が0.5の時、どちらのクラスに属しているかはわからない。(データ点が超平面上にあることをさす。)
  • 確率が0.5を超えないとき、\((C_2)\) のクラスに属しているとみなす。
これをシグモイド関数を用いることで実現します。
シグモイド関数はこれらの性質をうまく実現してくれます。
よって、距離をシグモイド関数にいれた値を確率として扱います。

交差エントロピー誤差関数

データ集合が \(\{\phi_n,t_n\}\)で与えられているとき、 確率を次のように考えます。
\[\sigma(w^T \phi_n)\]
この確率に対する尤度関数を考えます。
\[p(t|w) = \Pi_{n=1}^{N} y_{n}^{t_n} \{1-y_n\}^{1-t_n}\]
ただし、
\[y_n = \sigma(w^T \phi_n) \]
\[t = (t_1,t_2,,,t_n)^T\]
y_n は\(\phi_n\) が\(C_1\) に属している確率です。
この尤度関数の負の対数をとると、対数の性質から次のようになります。
\[E(w) = -\log p(t|w) = - \sum_{n=1}^{N} \{t_n \log(y_n) + (1-t_n ) \log(1-y_n)\}\]
尤度関数の最大化は、この\(E(w)\)の最小化と同値になります。(対数は単調増加関数のため、最適解が変わらない)
\(E(w)\) は交差エントロピー誤差関数とゆわれています。

IRLS

IRLS は反復再重みづけ最小二乗のことです。最適化のためのこのアルゴリズムではニュートン法が用いられています。
E(w)を\(w\)について微分しましょう。
\begin{eqnarray*} \nabla E(w) &=& \nabla - \sum_{n=1}^{N} \{t_n \log(y_n) + (1-t_n ) \log(1-y_n)\}\\ &=& \nabla - \sum_{n=1}^{N} \{t_n \log(\sigma(w^T \phi_n) + (1-t_n ) \log(1-\sigma(w^T \phi_n)\}\\ &=&-\sum_{n=1}^{N} \{ \frac{t_n \sigma(w^T \phi_n)(1-\sigma(w^T \phi_n))}{\sigma(w^T \phi_n)}\phi_n - \frac{(1-t_n) \sigma(w^T \phi_n)(1-\sigma(w^T \phi_n))}{1-\sigma(w^T \phi_n)}\phi_n \}\\ &=& -\sum_{n=1}^{N} \frac{t_n (1-\sigma(w^T \phi_n))-(1-t_n)\sigma(w^T \phi_n)}{\sigma(w^T \phi_n) (1-\sigma(w^T \phi_n))} \{\sigma(w^T \phi_n) (1-\sigma(w^T \phi_n))\} \phi_n \\ &=& -\sum_{n=1}^{N} \{t_n (1-\sigma(w^T \phi_n))-(1-t_n)\sigma(w^T \phi_n)\} \phi_n \\ &=& -\sum_{n=1}^{N} \{t_n - t_n \sigma(w^T \phi_n) - \sigma(w^T \phi_n) - \sigma(w^T \phi_n) + t_n \sigma(w^T \phi)\} \phi_n\\ &=&\sum_{n=1}^{N} \{\sigma(w^T \phi_n) - t_n \} \phi_n\\ &=& \sum_{n=1}^{N} (y_n - t_n) \phi_n\\ &=& \phi^T (y - t)\\ \end{eqnarray*}
次に、E(w)のヘッセ行列を求めましょう。
\begin{eqnarray*} H &=& \nabla \nabla E(w) \\ &=& \nabla \phi^T(y-t) \\ &=& \nabla \sum_{n=1}^{N} \phi_{n}^T (y_n-t_n) \\ &=& \nabla\sum_{n=1}^{N} (y_n-t_n) \phi_{n}^T \\ &=&\sum_{n=1}^{N} y_n(1-y_n) \phi_n \phi^T = \phi^T R \phi \end{eqnarray*}
ここでRは対角成分に\(y_n(1-y_n)\) を持つ対角行列です。
これらの式を使うとwの更新は次のようになります。
\begin{eqnarray*} w_{new} &=& w_{old} - \{ \phi^ T R \phi \}^ {-1} \phi^T (y-t) \\ &=& \{ \phi^ T R \phi \}^ T \{ \phi^ T R \phi w_{old} - \phi^T(y-t)\} \\ &=& \{ \phi^ T R \phi \} ^ {-1} \phi^ T Rz \end{eqnarray*}
ただし、
$$z=\phi w_{old} - R^{-1}(y-t)$$

この記事ではロジスティック回帰の理論的な部分を扱いました。
次はロジスティック回帰の実装の記事を書こうと思います。
次の記事も見ていただけると嬉しいです。

*実装の記事も書きました。
Implementation of Logistic Regression


コメント

このブログの人気の投稿

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

カーネルk-meansの実装

Introduction   English ver 今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。 ここのpdf を主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。 また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。 #  理論編書きました。K-means 理論編 概要 dataset   ちょっとだけ理論の説明  k-means    kernel k-means   Dataset   English ver 今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。 一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。 二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。   this page にデータセットを作ったコードを載せています。 ちょっとだけ理論の説明 k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かな...

Bayes' theorem

Introduction sorry, this page is Japanese only.   今回はベイズの定理について書こうと思います。 ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。 ベイズの定理 ベイズの定理とは 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率) 確率P(B):事象Aが起こる前の事象Bの確率(事前確率) とするとき以下が成り立つことを示しています。 $$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$ 例 例えば、次のように事象A、事象Bwo定義します。 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。) 確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。 確率P(A|B)が低い時を考えてみましょう。 つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。 ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。 つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuber...