Processing math: 2%
スキップしてメイン コンテンツに移動

ロジスティック回帰 理論編

Introduction


今日はロジスティック回帰について書こうと思います。ロジスティック回帰は機械学習の中でも基本とされています。ロジスティック回帰は二値を分類するためのアルゴリズム、モデルです。

概要

この記事はPRMLを参考に書かせていただいています。
最適化には反復再重みづけ最小二乗法を用いています。
  • シグモイド関数
  • 分類のための確率を定義
  • 交差エントロピー誤差関数
  • 反復再重みづけ最小二乗法

シグモイド関数

初めにシグモイド関数を定義します。
以下のような関数です。
\sigma(a) = \frac{1}{1+\exp(a)}
後に扱うので、シグモイド関数の微分を計算しておきます。きれいな形をしています。
\begin{eqnarray*} \frac{d}{d a} \frac{1}{1+\exp(a)} &=& \frac{\exp(-a)}{(1+\exp(-a))^2} \\ &=& \frac{1}{1+\exp(-a)} \frac{\exp(-a)}{1+\exp(-a)}\\ &=& \frac{1}{1+\exp(-a)} \{ \frac{1+\exp(-a)}{1+\exp(-a)} - \frac{1}{1+\exp(-a)} \} \\ &=& \sigma(a)(1-\sigma(a)) \end{eqnarray*}
シグモイド関数は機械学習において大事な役割を果たしています。
シグモイド関数は以下のような形をしています。
enter image description here
これを見てわかる通り、シグモイド関数は次のような性質を持っています。
  • シグモイド関数は 定義域は(-\infty,\infty)で定義され、値域は(0,1)で定義されています
  • シグモイド関数は単調増加関数です
  • シグモイド関数は(0,0.5)で点対称です
シグモイド関数の値を確率として考えることができるようになります。

分類のための確率の定義

初めにデータが正しく分類されたかの確率を考えてみる。
enter image description here
この直線は超平面だと思ってください。
超平面は以下のように表されます。
w^T x= 0
wは超平面に対する法線ベクトルになります。
  • w^T x > 0の時xは赤い領域にいる
  • w^T x < 0の時xは青い領域にいる
もし、データ点が赤い領域に属しているのならそのデータ点のクラスはC_1.
また、データ点が青い領域に属しているのならそのデータ点のクラスはC_2
C_1 は1を C_2は0をそれぞれラベルとして持っています。
私たちは、超平面から遠いデータ点ほど分類の結果に確信を持てます。
しかし、超平面に近いデータ点は必ずしもそうではないですよね。
超平面に近いデータ点に割り当てられたクラスはそんなに信用できない。
よって、シグモイド関数の性質を使う時が来た。超平面からデータポイントまでの距離を確率としてみましょう。
  • 確率が0.5を超えているとき(C_1)のクラスに属しているとみなす。
  • 確率が0.5の時、どちらのクラスに属しているかはわからない。(データ点が超平面上にあることをさす。)
  • 確率が0.5を超えないとき、(C_2) のクラスに属しているとみなす。
これをシグモイド関数を用いることで実現します。
シグモイド関数はこれらの性質をうまく実現してくれます。
よって、距離をシグモイド関数にいれた値を確率として扱います。

交差エントロピー誤差関数

データ集合が \{\phi_n,t_n\}で与えられているとき、 確率を次のように考えます。
\sigma(w^T \phi_n)
この確率に対する尤度関数を考えます。
p(t|w) = \Pi_{n=1}^{N} y_{n}^{t_n} \{1-y_n\}^{1-t_n}
ただし、
y_n = \sigma(w^T \phi_n)
t = (t_1,t_2,,,t_n)^T
y_n は\phi_nC_1 に属している確率です。
この尤度関数の負の対数をとると、対数の性質から次のようになります。
E(w) = -\log p(t|w) = - \sum_{n=1}^{N} \{t_n \log(y_n) + (1-t_n ) \log(1-y_n)\}
尤度関数の最大化は、このE(w)の最小化と同値になります。(対数は単調増加関数のため、最適解が変わらない)
E(w) は交差エントロピー誤差関数とゆわれています。

IRLS

IRLS は反復再重みづけ最小二乗のことです。最適化のためのこのアルゴリズムではニュートン法が用いられています。
E(w)をwについて微分しましょう。
\begin{eqnarray*} \nabla E(w) &=& \nabla - \sum_{n=1}^{N} \{t_n \log(y_n) + (1-t_n ) \log(1-y_n)\}\\ &=& \nabla - \sum_{n=1}^{N} \{t_n \log(\sigma(w^T \phi_n) + (1-t_n ) \log(1-\sigma(w^T \phi_n)\}\\ &=&-\sum_{n=1}^{N} \{ \frac{t_n \sigma(w^T \phi_n)(1-\sigma(w^T \phi_n))}{\sigma(w^T \phi_n)}\phi_n - \frac{(1-t_n) \sigma(w^T \phi_n)(1-\sigma(w^T \phi_n))}{1-\sigma(w^T \phi_n)}\phi_n \}\\ &=& -\sum_{n=1}^{N} \frac{t_n (1-\sigma(w^T \phi_n))-(1-t_n)\sigma(w^T \phi_n)}{\sigma(w^T \phi_n) (1-\sigma(w^T \phi_n))} \{\sigma(w^T \phi_n) (1-\sigma(w^T \phi_n))\} \phi_n \\ &=& -\sum_{n=1}^{N} \{t_n (1-\sigma(w^T \phi_n))-(1-t_n)\sigma(w^T \phi_n)\} \phi_n \\ &=& -\sum_{n=1}^{N} \{t_n - t_n \sigma(w^T \phi_n) - \sigma(w^T \phi_n) - \sigma(w^T \phi_n) + t_n \sigma(w^T \phi)\} \phi_n\\ &=&\sum_{n=1}^{N} \{\sigma(w^T \phi_n) - t_n \} \phi_n\\ &=& \sum_{n=1}^{N} (y_n - t_n) \phi_n\\ &=& \phi^T (y - t)\\ \end{eqnarray*}
次に、E(w)のヘッセ行列を求めましょう。
\begin{eqnarray*} H &=& \nabla \nabla E(w) \\ &=& \nabla \phi^T(y-t) \\ &=& \nabla \sum_{n=1}^{N} \phi_{n}^T (y_n-t_n) \\ &=& \nabla\sum_{n=1}^{N} (y_n-t_n) \phi_{n}^T \\ &=&\sum_{n=1}^{N} y_n(1-y_n) \phi_n \phi^T = \phi^T R \phi \end{eqnarray*}
ここでRは対角成分にy_n(1-y_n) を持つ対角行列です。
これらの式を使うとwの更新は次のようになります。
\begin{eqnarray*} w_{new} &=& w_{old} - \{ \phi^ T R \phi \}^ {-1} \phi^T (y-t) \\ &=& \{ \phi^ T R \phi \}^ T \{ \phi^ T R \phi w_{old} - \phi^T(y-t)\} \\ &=& \{ \phi^ T R \phi \} ^ {-1} \phi^ T Rz \end{eqnarray*}
ただし、
z=\phi w_{old} - R^{-1}(y-t)

この記事ではロジスティック回帰の理論的な部分を扱いました。
次はロジスティック回帰の実装の記事を書こうと思います。
次の記事も見ていただけると嬉しいです。

*実装の記事も書きました。
Implementation of Logistic Regression


コメント

このブログの人気の投稿

ヘッセ行列

Introduction English ver 今日は、ヘッセ行列を用いたテイラー展開について書こうと思います。 これは最適化を勉強するにあたって、とても大事になってくるので自分でまとめて残しておくことにしました。とくに、機械学習では最適化を必ず行うため、このブログのタイトルにもマッチした内容だと思います。 . 概要 ヘッセ行列の定義 ベクトルを用いたテイラー展開 関数の最適性 ヘッセ行列の定義 仮定 f は次のような条件を満たす関数です。. f はn次元ベクトルから実数値を出力します。 このベクトルは次のように表せます。 x = [x_1,x_2,,,,x_n] \forall x_i , i \in {1,2,,,n}, f は二回偏微分可能です。 定義 ヘッセ行列は \frac{\partial^2}{\partial x_i \partial x_j}を (i,j)要素に持ちます。 よってヘッセ行列は次のように表せます。 \[ H(f) = \left( \begin{array}{cccc} \frac{\partial^ 2}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & &\ldots \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^ 2 f}{\partial x_1 \partial x_2} & \frac{\partial^ 2 f}{\partial x_2^ 2} & \ldots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \ldo...

Implementation of Robbins monro

Robbins monro の実装 sorry, this page is Japanese only.   今回はRobbins monro の実装をしてみました。 Robbins monroは確率勾配降下法の学習率を入りテーション回数の逆数で割っていくものです。 使っているprogram言語はpython 3です。osはwindowsです。(macほしい...) アルゴリズム 確率勾配降下方とは目的関数の最適解を求めるアルゴリズムです。目的関数をf(X)とすると、手順は以下のようになっています。 初期学習率n_0を決めます。訓練データDを用意します。この訓練データは複数の初期値の集まりです。 訓練データから一つ初期値をランダムに取り出し、これをx_0とし、最初の予測値とします。 次の式に現在の予測値x_0を代入し、新たな予測値x_{n+1}を得ます。x_{n+1} = x_{n} - \frac{n_0}{n} grad f(X_n) 収束して入れば4へ、収束していなければ2で得られた値x{n+1}を新たにx_nとしてもう一度2を行う。 訓練データを一周していなければ2へ、一周していれば各初期値から得られた解の中から目的関数を最も小さくするものを選ぶ。   実装例 以下の目的関数を最小化させてみましょう。 f(x,y) = (x-2)^2 + (y-3)^2 コマンドラインでpythonを実行していきます。 予想通り、(2,3)という解を導き出してくれました。目的関数が簡単だったので、初期値をどの値でとってもばっちり正解にたどり着いてくれました。 CODE 以下にRobbins monroの関数だけ置いておきます。 こちら にすべてのコードを載せています。 def Robbins_monro(function,grad,number_variable_gradient): init_learning_rate = 1.5 stepsize = 1000 init_value = np.array([range(-1000,1020,20) for i in range(number_v...

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータXを例えば次のように線形分離できるように\phi(x)に送る写像\phiを考えます。 カーネルは次のように定義されます。 K(x,y) = \phi(x)^T \phi(y) \phiを具体的に計算することは難しいですが、K(x,y)を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2 ここで、 プロトタイプは\mu_i ~\forall k \in Kとしま...