スキップしてメイン コンテンツに移動

Theorem of Logistic regression.

Introduction


Today, I will write about Logistic regression. Logistic regression is the basis of Machine Learning. Logistic regression is the model to classify two value

Overview

This post is written by using PRML for reference.
Optimization is used for Iterative reweighted least squares method.

  • First, I will introduce the sigmoid function
  • Second, I will define probability to classify
  • Third, I will write cross-entropy error function
  • Fourth, I will explain IRLS
Firstly, We define Sigmoid function.
sigmoid function is following.

\[\sigma(a) = \frac{1}{1+\exp(a)}\]

I will compute differential of this function.

\begin{eqnarray*} \frac{d}{d a} \frac{1}{1+\exp(a)} &=& \frac{\exp(-a)}{(1+\exp(-a))^2} \\ &=& \frac{1}{1+\exp(-a)} \frac{\exp(-a)}{1+\exp(-a)}\\ &=& \frac{1}{1+\exp(-a)} \{ \frac{1+\exp(-a)}{1+\exp(-a)} - \frac{1}{1+\exp(-a)} \} \\ &=& \sigma(a)(1-\sigma(a)) \end{eqnarray*}

This function is very important in terms in terms of Machine Learning.
Because Sigmoid function has the following form.
enter image description here
The sigmoid function has the following characteristic.
  • Sigmoid function is defined on \((-\infty,\infty)\)
  • and, range of y is (0,1).
  • The sigmoid function is monotonic increase function.
  • Sigmoid function is point-symmetry in (0,0.5)
We regard the value of the sigmoid function as the probability.

Probability of classifying

First, We think of probability that data is properly classified.
enter image description here

This line is a hyperplane.
a hyperplane is expressed as follows.

\[w^T x= 0\]

w is a normal vector of the hyperplane.
  • Data point exist red domain when \(w^T x > 0\)
  • Data point exist blue domain when \(w^T x < 0\)
If data is exists in red domain, the data is belong \(C_1\).
If data exists in the blue domain, the data is belonging \(C_2\)
\(C_1\) have 1 as a label. \(C_2\) have 0 as a label.

We can have confidence that I know the class of data exist far from the hyperplane, but we do not know the class of data when data point exists near hyperplane.

We want not to believe the class of data predicted near hyper plane.

Therefore!!, I use disposition of Sigmoid function. I change the distance from
the hyperplane to data point into probability.
  • I handle that data point exist red domain\((C_1)\) when the probability is higher than 0.5.
  • When probability has just 0.5, I do not know the class of data. (The data exist on the hyperplane)
  • I handle that data point exist blue domain \((C_2)\) when the probability is lower than 0.5.
I summarize this paragraph. I want to handle as follows.
  • The farther the distance between a data point and the hyperplane is the farther keep probability away from 0.5.
  • The nearer the distance between a data point and the hyperplane is, the nearer probability is 0.5.
  • When the probability is near 1, I have confidence that class of the data is \(C_1\)
  • When the probability is near 0, I have confidence that class of the data is \(C_2\)
I implement this way of thinking by using the sigmoid function.
Sigmoid function fulfill these way of thinking.

Thus, I handle probability value which output of sigmoid function by input distance between datapoint and hyperplane.

Cross-entropy error function

when Data set is \(\{\phi_n,t_n\}\), I define probability by using Sigmoid function.
here, \(t_n \in {0,1}\)
I define likelihood function as follows.
\[p(t|w) = \Pi_{n=1}^{N} y_{n}^{t_n} \{1-y_n\}^{1-t_n}\]
here,\[y_n = \sigma(w^T \phi_n) \]
\[t = (t_1,t_2,,,t_n)^T\]
\(w^T x\)is distance between \(\phi\) and hyper plane.
y_n is probability that \(\phi_n\) is \(C_1\)
I get negative logarithm about likelihood function.
\[E(w) = -\log p(t|w) = - \sum_{n=1}^{N} \{t_n \log(y_n) + (1-t_n ) \log(1-y_n)\}\]

\(E(w)\) is called Cross-entropy error function

IRLS

IRLS is iterative reweighted least squares method. This method estimate w by using the Newton-Raphson method.

I get gradient of E(w).
\begin{eqnarray*} \nabla E(w) &=& \nabla - \sum_{n=1}^{N} \{t_n \log(y_n) + (1-t_n ) \log(1-y_n)\}\\ &=& \nabla - \sum_{n=1}^{N} \{t_n \log(\sigma(w^T \phi_n) + (1-t_n ) \log(1-\sigma(w^T \phi_n)\}\\ &=&-\sum_{n=1}^{N} \{ \frac{t_n \sigma(w^T \phi_n)(1-\sigma(w^T \phi_n))}{\sigma(w^T \phi_n)}\phi_n - \frac{(1-t_n) \sigma(w^T \phi_n)(1-\sigma(w^T \phi_n))}{1-\sigma(w^T \phi_n)}\phi_n \}\\ &=& -\sum_{n=1}^{N} \frac{t_n (1-\sigma(w^T \phi_n))-(1-t_n)\sigma(w^T \phi_n)}{\sigma(w^T \phi_n) (1-\sigma(w^T \phi_n))} \{\sigma(w^T \phi_n) (1-\sigma(w^T \phi_n))\} \phi_n \\ &=& -\sum_{n=1}^{N} \{t_n (1-\sigma(w^T \phi_n))-(1-t_n)\sigma(w^T \phi_n)\} \phi_n \\ &=& -\sum_{n=1}^{N} \{t_n - t_n \sigma(w^T \phi_n) - \sigma(w^T \phi_n) - \sigma(w^T \phi_n) + t_n \sigma(w^T \phi)\} \phi_n\\ &=&\sum_{n=1}^{N} \{\sigma(w^T \phi_n) - t_n \} \phi_n\\ &=& \sum_{n=1}^{N} (y_n - t_n) \phi_n\\ &=& \phi^T (y - t)\\ \end{eqnarray*}
I get Hessian matrix of E(w)
\begin{eqnarray*} H &=& \nabla \nabla E(w) \\ &=& \nabla \phi^T(y-t) \\ &=& \nabla \sum_{n=1}^{N} \phi_{n}^T (y_n-t_n) \\ &=& \nabla\sum_{n=1}^{N} (y_n-t_n) \phi_{n}^T \\ &=&\sum_{n=1}^{N} y_n(1-y_n) \phi_n \phi^T = \phi^T R \phi \end{eqnarray*}
here, R is daiagonal matrix and have \(y_n(1-y_n)\) element of (n,n)
I use These form to estimate by Newton-Raphson method.
\begin{eqnarray*} w_{new} &=& w_{old} - \{ \phi^ T R \phi \}^ {-1} \phi^T (y-t) \\ &=& \{ \phi^ T R \phi \}^ T \{ \phi^ T R \phi w_{old} - \phi^T(y-t)\} \\ &=& \{ \phi^ T R \phi \} ^ {-1} \phi^ T Rz \end{eqnarray*}

Thus, w is updated by this form.
This post is Theory ed of Logistic Regression.
Next, I implement Logistic Regression.
I am glad to see my next post.

*I wrote the implementation of Logistic Regression.
Implementation of Logistic Regression

コメント

このブログの人気の投稿

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

カーネルk-meansの実装

Introduction   English ver 今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。 ここのpdf を主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。 また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。 #  理論編書きました。K-means 理論編 概要 dataset   ちょっとだけ理論の説明  k-means    kernel k-means   Dataset   English ver 今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。 一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。 二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。   this page にデータセットを作ったコードを載せています。 ちょっとだけ理論の説明 k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かな...

Bayes' theorem

Introduction sorry, this page is Japanese only.   今回はベイズの定理について書こうと思います。 ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。 ベイズの定理 ベイズの定理とは 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率) 確率P(B):事象Aが起こる前の事象Bの確率(事前確率) とするとき以下が成り立つことを示しています。 $$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$ 例 例えば、次のように事象A、事象Bwo定義します。 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。) 確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。 確率P(A|B)が低い時を考えてみましょう。 つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。 ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。 つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuber...