Processing math: 100%
スキップしてメイン コンテンツに移動

Rolle’s theorem

Introduction

This post is written Rolle’s theorem.
The mean-value theorem is proved by Rolle’s theorem.
I will write Mean-value theorem at a later.
I introduce Maximum principle because proving Rolle’s theorem need Maximum principle.

Maximum principle

It is very easy.
f is continuous function on bounded closed interval.\implies**
f have max value.**

Proof

This proof is difficult.
I write this proof in other posts.
Maximum Principle

Rolle’s theorem

f is continuous function on [a,b] and differentiable function on (a,b).
f(a) = f(b) \implies \exists ~~c ~~s.t~~ f'(c) = 0 , a<c<b

Proof

  • f(x) is constant function
    \forall c \in (a,b) , f'(c) = 0
  • else
when \exists t ~~s.t~~f(a) < f(t), \exists c ~~s.t~~ \max f(x) = f(c) by Maximum principle
I proof f'(c)=0
f is differentiable on x = c and f(c) >= f(c+h).
Thus
f'(c) = \lim_{h \rightarrow +0} \frac{f(c+h) - f(c)}{h} \leq 0
f'(c) = \lim_{h \rightarrow -0} \frac{f(c+h) - f(c)}{h} \geq 0
Therefore 0 \leq \lim_{h \rightarrow -0} \frac{f(c+h) - f(c)}{h} =f'(c) = \lim_{h \rightarrow +0} \frac{f(c+h) - f(c)}{h} \leq 0
f'(c)=0
when\exists t ~~s.t f(a)>f(t), proof is same.

Image

enter image description here
when f(3)=f(5) , function have to turn.
This Turning point is c!!

Conclusion

Rolle’s theorem is used proof of the mean-value theorem.
I write mean-value theorem on other posts.
Mean-Value Theorem

Reference

https://mathtrain.jp/rolle

コメント

このブログの人気の投稿

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータXを例えば次のように線形分離できるように\phi(x)に送る写像\phiを考えます。 カーネルは次のように定義されます。 K(x,y) = \phi(x)^T \phi(y) \phiを具体的に計算することは難しいですが、K(x,y)を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2 ここで、 プロトタイプは\mu_i ~\forall k \in Kとしま...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードにd=\inftyを割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードにd=\inftyを割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムではO(log(|V|^2))という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

Visualization of Variational method

Introduction Today, I will implement visualization of Variational method. Variational method is used when we want to minimize functional. functional is function of function. Please look at  [1] , [2] , [3] , [5]  and  [6] . Overview formula  Implementation Visualization Formula I used following formula. F(x) = \sqrt{1+(\frac{du}{dx}(x))^2} l(u) = \int_{0}^{1} \sqrt{1+(\frac{du}{dx}(x))^2} dx l(u) is the length of the u(x).  I want to minimize l(u) subject to u(0)=a and u(1)=b. u minimizing I(u) is  u(x) = (b-a)x+a This u is line from (0,a) to (1,b). Because l(u) is the length of the u(x), We found out that u minimizing l(u) is line. Please look  [5]  to calculate of variational method. Implementation I implement visualization of variational method to check difference of optimize curve and other curve.  Let u_A is  u_A = (b-a)x+a + A sin(8t) A sin(8t) increase the di...