スキップしてメイン コンテンツに移動

SVMの理論 part 1

Introduction  

SVMの理論編を書いていこうと思います。実装編は
線形SVMの実装
カーネルSVMの実装
をご覧ください。
このpart 1の記事ではSVMの目的関数の導出までを書いていきます。

概要

  • 一般線形モデル
  • SVMの説明
  • ハードマージン
  • ソフトマージン


一般化線形モデル 

SVMには一般化線形モデルが使われています。一般化線形モデルとは次のようなモデルのことです。
$$f(x) = w^T\phi(x) + b$$
bはバイアスと呼ばれています。

$$0 = w^T\phi(x) + b$$は超平面(n次元平面)を表します。この超平面は$\phi(x)$をきれいに2クラスに分類するように決めます。

ここで$\phi(x)$は平面で分類できないようなxを平面で分類できる特徴空間に送る写像です。
$\phi(x)$のイメージは以下の画像を見てください。



左は線形分離不可能なデータ。右は$\phi(x)$によって特徴空間に移された線形分離可能なデータです。

よって$w^T \phi(x) + b$は特徴空間では平面となります。

次に、SVMの目的を説明します。

SVMの説明

    SVMではラベルは1 or -1として扱います。$y \in \{1,-1\}$、Xをデータセットとします。
    私たちの目的は決定関数と呼ばれるものを作ることです。
    SVMでは以下のようなものです。
    $$f(x_i) > 0 \implies y_i = 1 $$
    $$f(x_i) < 0 \implies y_i = -1$$

    f(x)は $w^T \phi(x) + b$とし、パラメータwとbを最適化します。
    しかし、最適化するにはあるよい基準が必要になります。SVMではマージンと呼ばれる値を使い、最適な境界線を決定します。

    ハードマージン
      SVMはマージンと呼ばれる値を用いて、クラスの境界は決定されます。
      マージンとは何なのでしょうか?


      境界$w^T \phi(x) +b = 0$から一番近いデータ$x_i$を持ってきます。マージンとは、境界と$x_i$との距離のことを言います。
      次の画像は二次元でのデータに対して、マージンを可視化したものです。



      この緑の線がマージンになります。SVMでは$w^T \phi(x) + b= 0$という境界は$w^T \phi(x) + b = 0$から最も近いデータのみに依存して決められます。このデータ点のことをサポートベクトルといいます。一般に二つ以上あります。

      私たちはマージンを最大化させるようなw,bを求め、境界を求めます。これは境界線と互いのクラスのデータをできるだけ話したいからです。

      データセットをXとします, $\forall x_i \in X$, xと境界$w^T \phi(x) + b = 0$の距離は
      $$\frac{|w^T \phi(x_i) + b|}{||W||}$$
      と表されます。

      今、すべてのデータ点は線形分離可能とします。つまり、特徴空間において、ある平面で完全に2クラスを分けることができるということです。


      この画像は線形分離可能なデータです。

      これは線形分離可能ではないデータです。

      よって、今全てのデータは線形分離可能であることを仮定しているので、
      $$f(x_i) > 0 \implies y_i = 1 $$
      $$f(x_i) < 0 \implies y_i = -1$$
      が必ず成立している必要があります。

      よって、
      $$\forall i \in N,~~~~~~~y_i(w^T \phi(x_i) + b) > 0$$
      が成り立ちます。

      そして、
      $$\frac{|w^T \phi(x_i) + b|}{||W||} = \frac{y(w^T \phi(x_i) + b)}{||W||}$$
      として、絶対値を外すことができます。

      次に$i_0$を次のような値とします。

      $$\forall i_0 \in \arg_{n \in N} \min_{x \in X} \frac{|w^T \phi(x_n) + b|}{||W||}$$,

      そして、Mを
      $$M = y_{i_0}(w^T \phi(x_{i_0}) + b)$$
      と定義します。
      ここで、$\forall i \in N,~y_i(w^T \phi(x_i) + b) > 0$なので、$M > 0$が常に成り立ちます。

      Mは境界$w^T \phi(x) + b = 0$から最も近いデータまでの距離を表しています

      よって目的関数は次のように表されます。

      $$\max_{w,b,M} \frac{M}{||W||}$$ $$~~s.t~~ \forall i \in N ~, y_i(w^T \phi(x_i) + b) \geq M$$

      $w^{\star}  = \frac{w}{M}, b^{\star}  = \frac{b}{M}$とし、目的関数を変数変換します。
      $$\max_{w^{\star},b^{\star}} \frac{1}{||W^{\star}||}$$
      $$~~s.t~~ \forall i \in N, y_i (w^{\star} \phi(x_i) + b^{\star}) \geq 1$$


      $||W^{\star}|| > 0$なことから、
      $$\max_{w^{\star},b^{\star}} \frac{1}{||W^{\star}||}$$
      $$\iff \min_{w^{\star},b^{\star}}  ||W^{\star}||$$
      $$\iff \min_{w^{\star},b^{\star}}  ||W^{\star}||^2$$
      と書き換えることが可能です。

      よってSVMの目的関数は
      $$\min_{w,b}  ||W||^2$$
      $$~~s.t~~ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1$$
      と書くことができます。

      ただし、$W^{\star} = W, b^{\star} = b$と再び定義しなおしました。

      ここまで、データが完全に超平面で分離できることを仮定していました。この手法はハードマージンと呼ばれています。

      しかし、現実のデータは完全に線形分離できることは稀です。そこでハードマージンに代わり、ソフトマージンと呼ばれるものが開発されました。

      ソフトマージン
      $\epsilon_i \geq 0$ を新たに目的関数に導入することを考えます。

      $\forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1$という条件を緩和します。 条件を書き換えると以下のようになります。

      $$ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1 - \epsilon_i$$

      もし、$x_i$が$w^T \phi(x) + b = 0$を超えている場合、 $\epsilon_i > 0$ が成り立ちます。

      $x_5$と$x_8$とx_9$は境界$w^T \phi(x) + b = 0$を超えています。
      この黒い線の距離が\epsilon_i$の値になります。

      目的関数を次のように書き替えます。
      $$\min_{w,b}  \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i$$
      $$~~s.t~~ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1 - \epsilon_i ,~~~~\epsilon \geq 0 , \forall i \in N$$

      Cは正規化係数と呼ばれています。
      このパラメータはハイパーパラメータであり、自分であらかじめ決めておく必要があります。Cは誤分類の抑制を調節する役割を担っています。Cが小さくなればなるほど、$\sum_{i \in N}\epsilon_i$が目的関数に与える影響は少なくなり、$\epsilon_i$は大きい値をとることができてしまします。よってたくさんの誤分類を許してしまうことになります。反対に、 Cが大きくなればなるほど、$\sum_{i \in N}\epsilon_i$が目的関数に与える影響は大きくなり、最小化をする上で$\epsilon_i$はあまり、大きい値をとれなくなります。
      $C = \infty$とすると、これはハードマージンと同一視することができます。
      Reference
        https://www.amazon.co.jp/%E3%82%B5%E3%83%9D%E3%83%BC%E3%83%88%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E3%83%9E%E3%82%B7%E3%83%B3-%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%97%E3%83%AD%E3%83%95%E3%82%A7%E3%83%83%E3%82%B7%E3%83%A7%E3%83%8A%E3%83%AB%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA-%E7%AB%B9%E5%86%85-%E4%B8%80%E9%83%8E/dp/4061529064

        コメント

        このブログの人気の投稿

        K-means 理論編

        Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

        カーネルk-meansの実装

        Introduction   English ver 今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。 ここのpdf を主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。 また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。 #  理論編書きました。K-means 理論編 概要 dataset   ちょっとだけ理論の説明  k-means    kernel k-means   Dataset   English ver 今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。 一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。 二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。   this page にデータセットを作ったコードを載せています。 ちょっとだけ理論の説明 k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かな...

        Bayes' theorem

        Introduction sorry, this page is Japanese only.   今回はベイズの定理について書こうと思います。 ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。 ベイズの定理 ベイズの定理とは 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率) 確率P(B):事象Aが起こる前の事象Bの確率(事前確率) とするとき以下が成り立つことを示しています。 $$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$ 例 例えば、次のように事象A、事象Bwo定義します。 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。) 確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。 確率P(A|B)が低い時を考えてみましょう。 つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。 ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。 つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuber...