Introduction
Today, I will write definition of continuity of function by definition of an open set.
I wrote this post about the definition of Topology space, open set, and a thing that open set satisfy the axiom of Topology, but I did not write about continuity of function by definition of an open set. Actually, It is very important.
Overview
Open set
Let (X,d) is distance space.
A \subset X is open set
\iff
\forall x \in A,~~\exists \epsilon > 0, ~~s.t.~~ B(x,\epsilon) \subset A
here,B(x,\epsilon):= \{y\in A| d(x,y) < \epsilon\}
This definition of open set satisfies Axim of Topology. It written the last time post.
\epsilon-\delta reasoning
I will explain the \epsilon-\delta reasoning. This reasoning is learned in bachelor third student at Univ.
Let f:X-> Y: map
f is countinous where x=x_0
\iff
\lim_{x \rightarrow x_0} f(x) = f(x_0)
\iff
\forall \epsilon > 0,~~\exists \delta >0 ~~s.t~~ d(x,x_0) < \delta \implies d(f(x),f(x_0)) < \epsilon
definition of continuity of function by an open set
Equivalence
- Define 1.0 \implies \epsilon-\delta reasoning
\forall V, f(x_0) \in V. Thus, x_0 \in f^{-1}(V).
Because f^{-1}(V) is open set, \exists \delta > 0 ~~s.t.~~ B(x_0,\delta) \subset f^{-1}(V).
Therefore, \forall x \in X ,~~x \in B(x_0,\delta) \implies x \in f^{-1}(V).
x \in B(x_0,\delta) \iff d(x,x_0) < \delta
x \in f^{-1}(V) \iff f(x) \in V.
here, let radius of V is \frac{\epsilon}{2}.
Then, because f(x) \in V, ~~d(f(x),f(x_0)) < \epsilon.
At result, because V is arbitrary,
\forall \epsilon ~~\exists \delta ~~s.t.~~ d(x,x_0) < \delta \implies d(f(x),f(x_0)) < \epsilon
- \epsilon-\delta reasoning. \implies Define 1.0
\forall x \in f^{-1}(V), because f(x) \in V and f(x_0) \in V, d(f(x),f(x_0)) < \epsilon. here, let \frac{\epsilon}{2} is redius of V.
by \epsilon-\delta reasoning, \exists \delta > 0 ~~s.t.~~ d(x,x_0) < \delta.
Let B(x,\delta):= \{y \in X|d(x,y) < \delta \}.
\forall y \in B(x,\delta), because d(x,y) < \delta, d(f(x),f(y)) < \epsilon. Thus, f(y) \in B(f(x),\epsilon) \subset V because V is open set.
Because f(y) \in V, y \in f^{-1}(V).
Thus, y \in B(x,\delta) \implies y \in f^{-1}(V).
At result, B(x,\delta) \subset f^{-1}(V).
Therefore f^{-1}(V) is open set.
Q.E.D
Today, I will write definition of continuity of function by definition of an open set.
I wrote this post about the definition of Topology space, open set, and a thing that open set satisfy the axiom of Topology, but I did not write about continuity of function by definition of an open set. Actually, It is very important.
Overview
- Open set
- \epsilon-\delta reasoning
- definition of continuity of function by an open set
- Equivalence
Open set
Let (X,d) is distance space.
A \subset X is open set
\iff
\forall x \in A,~~\exists \epsilon > 0, ~~s.t.~~ B(x,\epsilon) \subset A
here,B(x,\epsilon):= \{y\in A| d(x,y) < \epsilon\}
This definition of open set satisfies Axim of Topology. It written the last time post.
\epsilon-\delta reasoning
I will explain the \epsilon-\delta reasoning. This reasoning is learned in bachelor third student at Univ.
Let f:X-> Y: map
f is countinous where x=x_0
\iff
\lim_{x \rightarrow x_0} f(x) = f(x_0)
\iff
\forall \epsilon > 0,~~\exists \delta >0 ~~s.t~~ d(x,x_0) < \delta \implies d(f(x),f(x_0)) < \epsilon
definition of continuity of function by an open set
Define1.0
Let (X,\mathbb{O}_X),(Y,\mathbb{O}_Y) is Topology space, and
f:X \rightarrow Y is countinous where x=x_0
\iff
f(x_0) \in \forall V:\textrm{open set} \subset Y~~,f^{-1} (V) \subset X ~~\textrm{is open set}
here,\mathbb{O_X} and \mathbb{O_Y} is open set family in X,Y, and f^{-1} (V) := \{a \in X| f(a) \in V \}.
This definition is equivalence with \epsilon-\delta reasoning.Let (X,\mathbb{O}_X),(Y,\mathbb{O}_Y) is Topology space, and
f:X \rightarrow Y is countinous where x=x_0
\iff
f(x_0) \in \forall V:\textrm{open set} \subset Y~~,f^{-1} (V) \subset X ~~\textrm{is open set}
here,\mathbb{O_X} and \mathbb{O_Y} is open set family in X,Y, and f^{-1} (V) := \{a \in X| f(a) \in V \}.
Equivalence
- Define 1.0 \implies \epsilon-\delta reasoning
\forall V, f(x_0) \in V. Thus, x_0 \in f^{-1}(V).
Because f^{-1}(V) is open set, \exists \delta > 0 ~~s.t.~~ B(x_0,\delta) \subset f^{-1}(V).
Therefore, \forall x \in X ,~~x \in B(x_0,\delta) \implies x \in f^{-1}(V).
x \in B(x_0,\delta) \iff d(x,x_0) < \delta
x \in f^{-1}(V) \iff f(x) \in V.
here, let radius of V is \frac{\epsilon}{2}.
Then, because f(x) \in V, ~~d(f(x),f(x_0)) < \epsilon.
At result, because V is arbitrary,
\forall \epsilon ~~\exists \delta ~~s.t.~~ d(x,x_0) < \delta \implies d(f(x),f(x_0)) < \epsilon
- \epsilon-\delta reasoning. \implies Define 1.0
\forall x \in f^{-1}(V), because f(x) \in V and f(x_0) \in V, d(f(x),f(x_0)) < \epsilon. here, let \frac{\epsilon}{2} is redius of V.
by \epsilon-\delta reasoning, \exists \delta > 0 ~~s.t.~~ d(x,x_0) < \delta.
Let B(x,\delta):= \{y \in X|d(x,y) < \delta \}.
\forall y \in B(x,\delta), because d(x,y) < \delta, d(f(x),f(y)) < \epsilon. Thus, f(y) \in B(f(x),\epsilon) \subset V because V is open set.
Because f(y) \in V, y \in f^{-1}(V).
Thus, y \in B(x,\delta) \implies y \in f^{-1}(V).
At result, B(x,\delta) \subset f^{-1}(V).
Therefore f^{-1}(V) is open set.
Q.E.D
コメント
コメントを投稿