スキップしてメイン コンテンツに移動

位相を用いた写像の連続性の定義

Introduction


今日は写像の連続性の定義を位相を用いて行います。こちらの記事では位相の定義、開集合、開集合が位相の公理を満たすことを示しました。しかし、写像の連続性の定義は行いませんでした。この記事ではそれをやっていきます。重要なことであり、証明を書きます。

概要

  •  開集合
  • $\epsilon-\delta$論法
  • 開集合による写像の連続性の定義
  • 同値の証明


開集合

(X,d)を距離空間とします。
$A \subset X$:開集合
$$\iff$$
$$\forall x \in A,~~\exists \epsilon > 0, ~~s.t.~~ B(x,\epsilon) \subset A$$

ここで、$$B(x,\epsilon):= \{y\in A| d(x,y) < \epsilon\}$$

この定義は位相の公理を満たすので位相として距離空間に入れることができます。そのことは前回の記事で書きました。

$\epsilon-\delta$ 論法

$\epsilon-\delta$論法について確認します。この論法は学部一年生で習うと思います。

f:X-> Y:写像で、
fが$x=x_0$で連続とは
$$\iff$$
$$\lim_{x \rightarrow x_0} f(x) = f(x_0)$$
$$\iff$$
$$\forall \epsilon > 0,~~\exists \delta >0 ~~s.t~~ d(x,x_0) < \delta \implies d(f(x),f(x_0)) < \epsilon $$

開集合を用いた写像の連続性の定義

Define1.0

$(X,\mathbb{O}_X),(Y,\mathbb{O}_Y)$を位相空間とします。
$f:X \rightarrow Y$が$x=x_0$で連続
$$\iff$$
$$f(x_0) \in \forall V:\textrm{open set} \subset Y~~,f^{-1} (V) \subset X ~~\textrm{is open set}$$
ここで、$\mathbb{O_X}$ and $\mathbb{O_Y}$はそれぞれ、X,Yの開集合族です。さらに、$f^{-1} (V) := \{a \in X| f(a) \in V \}$とします。

この定義は$\epsilon-\delta$論法と同値になります。
同値の証明


  • Define 1.0 $\implies$ $\epsilon-\delta$論法

$\forall V, f(x_0) \in V$.よって、 $x_0 \in f^{-1}(V)$.
$f^{-1}(V)$は開集合なので、$\exists \delta > 0 ~~s.t.~~ B(x_0,\delta) \subset f^{-1}(V)$.
よって、$\forall x \in X ,~~x \in B(x_0,\delta) \implies x \in f^{-1}(V)$.
$x \in B(x_0,\delta) \iff d(x,x_0) < \delta$
$x \in f^{-1}(V) \iff f(x) \in V$.
ここで、$V$の半径を$\frac{\epsilon}{2}$とします。
$f(x) \in V$なので、$~~d(f(x),f(x_0)) < \epsilon$.

結果、$V$が任意なので、
$$\forall \epsilon ~~\exists \delta ~~s.t.~~ d(x,x_0) < \delta \implies d(f(x),f(x_0)) < \epsilon$$


  • $\epsilon-\delta$ reasoning. $\implies$ Define 1.0

$\forall x \in f^{-1}(V)$,$f(x) \in V$と$f(x_0) \in V$が成り立つので、 $d(f(x),f(x_0)) < \epsilon$.ここで、$\frac{\epsilon}{2}$は$V$の半径とします。
$\epsilon-\delta$論法により、 $\exists \delta > 0 ~~s.t.~~ d(x,x_0) < \delta$.

$B(x,\delta):= \{y \in X|d(x,y) < \delta \}$とします。
$\forall y \in B(x,\delta),$ because $d(x,y) < \delta$, $d(f(x),f(y)) < \epsilon$. よって、$f(y) \in B(f(x),\epsilon) \subset V$
$f(y) \in V$なので、$y \in f^{-1}(V)$.
よって、$y \in B(x,\delta) \implies y \in f^{-1}(V)$.
結果、$B(x,\delta) \subset  f^{-1}(V)$.
よって、$f^{-1}(V)$は開集合。

Q.E.D

コメント

このブログの人気の投稿

K-means 理論編

Introduction English ver 今日はK-meansアルゴリズムの理論について書きます。 K-meansアルゴリズムはクラスタリングのためのアルゴリズムです。 K-meansの実装の記事は カーネルK-meansの実装 を御覧ください。 この記事はカーネルK-menasの実装についての記事ですが、通常のK-meansの実装も行っています。カーネルK-meansについてはまた、今度別の記事で紹介したいと思います。 概要 1 of K 符号化法 プロトタイプ 歪み尺度 最適化 1 of K 符号化法 K-meansはK個のクラスについて分類することを考えます。 K-meansでは $x_n$がkのクラスに属していることを次のように表します。 ベクトル$r_n:1 \times K$ を $$r_n := (0,0,..,1,..,0)$$ このベクトルはk番目にのみ1を持ち、それ以外は0を要素に持つようなベクトルです。 こののような表現の仕方を1 of K符号化法と呼びます。 プロトタイプ K-meansではプロトタイプと呼ばれるベクトルを選びます。このベクトルは各クラスに一つあり、そのクラスの代表のようなベクトルです。 K-means ではそのようなベクトルは各クラスの平均ベクトルとなります。これは目的関数から自然と導かれます。 歪み尺度 プロトタイプベクトルを $\mu_i ~\forall k \in K$とします。 この時、k-meansの目的関数は次のようになります。 $$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2$$ ここで、 $r_{nk}$ は$r_n$のk番目の要素です。 この目的関数について少し説明をします。$r_{n}$は$x_n$が属しているクラスのラベルの場所だけ1で他は0であるので、 $$J = \sum_{n=1}^{N} ||x_n - \mu_{x_n}||$$ ここで、$\mu_{k_n}$は$x_n$が属しているクラスのプロトタイプです。 よって、 $$J = ||x_1 - \mu_{x_1}|| + ||x_2 -\mu_{x_2}|| + ...

カーネルk-meansの実装

Introduction   English ver 今日はカーネルk-meansの実装をしました。k-menasアルゴリズムはクラスタリングのためのアルゴリズムです。僕がカーネルk-meansを実装しようと思ったのには一つ理由があります。それは僕の友人がk-meansのプレゼンを、僕がカーネルのプレゼンをしていた時に、k-meansにカーネルを適応できないかと思ったからです。そこで、カーネルk-meansについての論文を探しました。 ここのpdf を主に参考にさせていただきました。うまくカーネルk-meansを実装できたと思います。ここでは、普通のk-meansとカーネルを用いた,kernel k-meansについての実装の結果を紹介します。 また、この記事では実装結果のみ書きますが、理論のほうも別の記事で書くつもりです。書き終えたらリンクをこの記事にも貼っておきます。 #  理論編書きました。K-means 理論編 概要 dataset   ちょっとだけ理論の説明  k-means    kernel k-means   Dataset   English ver 今回使うのは二つのデータセットです。一つ目は、普通のk-means用のデータです。二つ目はkernel k-means用のデータセットです。 一つ目のデータは、三つのグループで構成されており、次元は2で、サンプル数は300です。以下のような分布になっています。 二つ目のデータは二つのグループで構成されており、次元は2でサンプル数は300です。   this page にデータセットを作ったコードを載せています。 ちょっとだけ理論の説明 k-meansとは、k-平均法とも呼ばれています。初めに、適当なクラスに分け、各クラスの中で平均となるベクトルを求めます。そして、各データに対して、すべての平均ベクトルとの距離を求めます。そして、最小となる距離になるクラスに改めて、そのデータをクラスタリングします。そして、新たに得られたクラスの中でそれぞれ平均ベクトルを求め、これを繰り返し、平均ベクトルが動かな...

Bayes' theorem

Introduction sorry, this page is Japanese only.   今回はベイズの定理について書こうと思います。 ベイズの定理とは、イギリスのトーマス・ベイズによって発見された、条件付き確率に関する定理です。現在のベイズ推定で用いられる重要な定理です。どのような定理かを解説していこうと思います。 ベイズの定理 ベイズの定理とは 確率P(B|A):事象Aが起こった後での事象Bの確率(事後確率) 確率P(B):事象Aが起こる前の事象Bの確率(事前確率) とするとき以下が成り立つことを示しています。 $$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$ 例 例えば、次のように事象A、事象Bwo定義します。 事象A:あるYoutuberが動画を投稿したとき、再生回数が100万回を超える 事象B:あるYoutuberがお金を50万円以上使う動画を投稿する この時確率P(A|B)、つまり50万円以上を使った動画が再生回数100万回を超える確率は、youtube内の50万円以上使っている動画を根こそぎ集め、その再生回数を得ることによって推定できそうです。では確率P(A|B)がわかった時、確率P(B|A)もわかる。これがベイズの定理の強みです。(当然確率P(A)とP(B)がわかっている必要はあります。) 確率P(B|A)とはあるYoutuberの動画が再生回数100万回を超えたとき、その同がで50万円以上使っている確率となります。これがわかれば、100万回動画が再生される原因は本当に50万円以上お金を使うことなのかがわかります。 確率P(A|B)が低い時を考えてみましょう。 つまり、50万円以上使った動画は再生回数100万回を超える確率は高い。しかし、100万回再生回数を突破したとき、その動画が50万円以上使っている可能性は低い。この状況はベイズの定理の式を考えいると理解しやすいです。 ベイズの定理の式を見てみると、P(B|A)は低く、P(A|B)が高いということは、確率P(A)が著しく高い。もしくは、P(B)が著しく低い。この二つがあげられます。 つまり、あるYouruberが100万回再生を突破する確率がかなり、高い。もしくは、あるYoutuber...