スキップしてメイン コンテンツに移動

投稿

大学院試験 -外部への道しるべ-

始めに この度、 京都大学大学院情報学研究科システム科学専攻 に合格することができました!!! 僕は現在、立命館大学という関西の私立大学に通っているので、外部受験をしたことになります。 さらに、学部は数学専攻で、大学院からは情報学(の中でも機械学習)専攻になるので、専門も変えることになります。 この記事では、外部の大学院、もしくは専攻替えを考えている人向けに書こうと思っているので、目次で気になった項目があれば、ぜひ、読んでいってくださいませ。( *´艸`) ちなみに、予測点数は線形微積6~7割、専門科目満点、英語かなり低いので内緒です。(笑) 得点開示を要求するので、得点がわかったら、また追記します。 目次 外部受験を目指すまで、目指したきっかけ 外部受検の大変さ 専攻替えの大変さ 合格するために 英語が苦手な人へ 数学科の学部から情報学(機械学習)の大学院を目指す人へ 応援 外部受検を目指すまで、目指したきっかけ ここでは、自分の大学生活がどんなだったかを書いてるだけなので、興味のない人は飛ばしましょう。(笑) 僕が学部二回生頃に、当時数理科には機械学習の研究をされている先生が一人だけ所属されていました。その先生に、直接弟子入りさせていただき、僕の機械学習への道は始まりました。。。(メインは遺伝統計学の研究でした。) 弟子入りした直後は、タイピングもなめくじのように遅かったですし、gitもpullする前にpushしたこともありました。。。 しかし、その先生は、目的に最先端で届く道のりを用意してくださいました。 プログラミングを初めて一か月ほどで、t-SNEの実装をしたり(遺伝統計学の研究で必要だった)、四か月ほどで、カーネルc-SVMの実装をしたり(やってみなとゆわれて(笑))することができました。その後も、学部二回生、三回生ながら、論文を読んで実装してきました。 学部二回生冬には、遺伝統計学の研究を 株式会社パーソルキャリア さん主催のハッチングフェスというデータサイエンティストのためのイベントで、発表しました。 このイベントでは、企業の方もたくさん来られて、知り合えるチャンスがかなりあります!! (名刺を作っておくと、「えっ、学生なのに名刺持ってるの?!」ってなるので、覚えてもらえます。...
最近の投稿

離散フーリエ変換

Introduction English ver 今日は離散フーリエ変換について書きます。 現在、シグナル解析についてのpdfを作成中です。このpdfは github で公開中です。 シグナル解析は、courseraのレクチャーで勉強中です。 ここ にリンクを貼っておきます。 pdfは随時更新中です。

Discrete Fourier transform

Introduction 日本語 ver I will write about Discrete Fourier transform. Discrete Fourier transform is Abbreviated DFT. I am making pdf about Audio Signal Processing. I publish pdf at  github . However, I write tex in Japanese. I take a lecture about the signal processing. There is lecture at  thie page . I update this pdf.

変分法の可視化

Introduction English ver 今日は、変分法の可視化を実装しました。変分法は、汎関数を最小化させるために使われます。汎関数とは、関数の関数のようなものです。変分法については、  [1] , [2] , [3] , [5] ,  [6] などを参考にしてください。 概要 汎関数 実装 可視化 汎関数 今回は、次のような汎関数を使います。 $$F(x) = \sqrt{1+(\frac{du}{dx}(x))^2}$$ $$l(u) = \int_{0}^{1} \sqrt{1+(\frac{du}{dx}(x))^2} dx$$ l(u)はu(x)という曲線の長さです。.  $u(0)=a$ and $u(1)=b$という制約のもと、$l(u)$を最小化したいといます。 最適な$l(u)$は $$u(x) = (b-a)x+a$$ となります。 (0,a) から (1,b)への直線になっているのがわかります。 これは、$l(u)$は$u$の曲線の長さなので、これを最小化するためには直線が一番であることが直観的にわかります。 変分法での導出は、 [5] を参考にしてください。 実装 変分法における最適な曲線とそうでない曲線の違いを可視化する実装をしました。 $u_A$を $$u_A = (b-a)x+a + A sin(8t)$$ とします。 $A sin(8t)$ は$u$から話す役割を持ちます。. $A \in [0,0.5]$であり、もし$A=0$であれば、$u_A=u$です。 github でcodeを公開しています。 可視化 上側の画像は$u_A(x)$を表しています。下側の画像は$l(u_A)$の値を表しています。 $u_A(x)$が$u$に近づくほど、$l(u_A)$が小さくなることがわかります。 Reference [1] http://www2.kaiyodai.ac.jp/~takenawa/optimization/resume10-4.pdf [2] http://hooktail.sub.jp/mathInPhys/brach...

Visualization of Variational method

Introduction Today, I will implement visualization of Variational method. Variational method is used when we want to minimize functional. functional is function of function. Please look at  [1] , [2] , [3] , [5]  and  [6] . Overview formula  Implementation Visualization Formula I used following formula. $$F(x) = \sqrt{1+(\frac{du}{dx}(x))^2}$$ $$l(u) = \int_{0}^{1} \sqrt{1+(\frac{du}{dx}(x))^2} dx$$ l(u) is the length of the u(x).  I want to minimize l(u) subject to $u(0)=a$ and $u(1)=b$. u minimizing I(u) is  $$u(x) = (b-a)x+a$$ This u is line from (0,a) to (1,b). Because l(u) is the length of the u(x), We found out that u minimizing l(u) is line. Please look  [5]  to calculate of variational method. Implementation I implement visualization of variational method to check difference of optimize curve and other curve.  Let $u_A$ is  $$u_A = (b-a)x+a + A sin(8t)$$ $A sin(8t)$ increase the di...

ダイクストラ法

Introduction English ver 今日は、ダイクストラ法について書きます。ダイクストラ法とは最短距離を求めるアルゴリズムです。地図はグラフで表されます。もし、まだ this page を見ていない方は先にこちらをご覧ください。今回はこの記事を前提としています。このページでは、グラフの定義と、ヒープ構造について書いています。ダイクストラ法ではヒープ構造を使って、かなりの計算量を落とします。 この スライド はダイクストラ法を説明したスライドです。 Overview アルゴリズム 実装 アルゴリズム このアルゴリズムは スタート始点のノードを決める。そして、それをAと名付ける。 各ノードに$d=\infty$を割り当てる。ただし、スタート地点はd=0 Aの隣接ノードのリストをadj_listと名付ける。  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. グラフnetworkからAを取り除く グラフnetworkの中で最初のdを持っているノードをAとし、4に戻る。 となっています。 このアルゴリズムを図を用いて説明します。  このグラフを使って説明します。  初めに、スタート地点を決めます。そして、各ノードに$d=\infty$を割り当てます。  Aから始まります。Aの隣接ノードであるBのdを更新します。もし、現在のBよりもAのdとA->Bへの重みを足したもののほうが小さいならdをその値に更新します。同じようにCnのdを更新します。 次にAを取り除きます。  次はBから始まります。Aと同じことをやります。 このダイクストラ法では今のような操作をグラフの全てのノードに×がつくまで続きます。 実装 このアルゴリズムでは$O(log(|V|^2))$という計算量を持っています。最小のdを持つノードを探すのに時間がかかります。 しかし、ヒープ構造を使えばO((E+V)log(V))に減らせます。ヒープ構造で現時点での...

dijkstra method

Introduction 日本語 ver Today, I will write about the dijkstra method. This method is algorithm which find the shortest distance. The map is expressed by graph. If you never see  this page , look at its page. This page explain the heap structure and definition of graph. The dijkstra method used heap structure, Because heap structure reduce the amout of calculation of dijkstra method. I use  this slide  to explain dijkstra. Overview Algorithm Implementation Algorithm This algorithm is  Decide start node, and this node named A. Allocate $d=\infty$ for each node, but d=0 for start node. Adjacent node of A named adj_list.  For adj in adj_list:  If d of adj > d of A + weight to adj -> d = A + weight to adj. Remove A from graph network. Find node which have the smallest d and it named A, and if network have node, back to 4. I explain this algorithm by drawing.  I explain algorithm by using this graph.  Fis...