Processing math: 1%
スキップしてメイン コンテンツに移動

SVMの理論 part 2

Introduction

今日はSVMの定理について書いていきます。
この記事はpart 2になります。Part 1 では目的関数の導出までを書きました。Part 2では双対問題とゆわれるものを導出します。Part 1で導いた目的関数は主問題と呼ばれます。一般的に、SVMでは主問題ではなく、双対問題を解くことで最適解を得ます。

もし、まだPart 1を見ておられない場合は、Theorem of SVM part 1を見てくださるとよいのではないかと思います。

SVMの実装編は
Implement linear SVM
Implement kernel SVM
を御覧ください。

概要
  • 主問題
  • 双対問題 
  • ラグランジュ関数
  • 主変数について、最小化、双対変数について最大化
  • 双対変数について最大化、主変数について最小化


主問題
Part 1で導いた主問題の復習をしておきます。

\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i

~~s.t~~ \forall i \in N, y_i (w^T \phi(x_i) + b) \geq 1 - \epsilon_i ,~~~, \forall i \in N~\epsilon \geq 0

これはソフトマージンの時の目的関数ですが、以後ソフトマージンの場合のみを扱っていきます。

さて、双対問題と呼ばれるものですが、これは主問題から自然に導かれます。

双対問題

SVMの最適化問題は凸二次最適化問題と呼ばれる種類の問題です。凸二次最低化問題は、必ず大域最適解に近づくことが知れれており、数値上の安全性が高いとされています。

双対問題を導出します。まず、主問題を以下のように書き換えます。

\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i

~~s.t~~ \forall i \in N, -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \}\leq 0,~~~, \forall i \in N~ -\epsilon \leq 0

Lagurange function

次に、新たに\alpha,\muという要素に非負のパラメータを持つベクトルを導入します。これは以下のラグランジュ関数を定義するためです。
ラグランジュ関数は以下のようになります。

L(w,b,\epsilon,\alpha,\mu) := \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i -\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i

ここで、\alpha = (\alpha_1,\alpha_2,...,\alpha_n)\mu = (\mu_1,\mu_2,..,\mu_n)です。

w,b,\epsilonは主変数といい、一方\alpha,\muは双対変数と呼ばれています。

主変数についての最小化、双対変数についての最大化


新たにP(w,b,\epsilon)\alpha,\muについてLを最大化することで定義します。

P(w,b,\epsilon):= \max_{\alpha \geq 0, \mu \geq 0} L(w,b,\epsilon,\alpha,\mu)

次にPを主変数について最小化します。

\min_{w,b,\epsilon} P(w,b,\epsilon) = \min_{w,b,\epsilon}\max_{\alpha \geq 0, \mu \geq 0} L(w,b,\epsilon,\alpha,\mu)

この最適化問題は元の主問題と同等であることを示します。(ここでの同等とは、どちらの最適化問題を解いても同じ解が得られることとします。)

\min_{w,b,\epsilon} P(w,b,\epsilon)を次のように書き替えます。

\min_{w,b,\epsilon} P(w,b,\epsilon) = \min_{w,b,\epsilon}\max_{\alpha \geq 0, \mu \geq 0} L(w,b,\epsilon,\alpha,\mu)
= \min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i + \max_{\alpha \geq 0,\mu \geq 0} \{-\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i \}

最初の項と二つ目の項は\alpha,\muとは関係のない項なのでこのように書き換えられました。

一方、主問題は

\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i

~~s.t~~ \forall i \in N, -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \}\leq 0,~~~, \forall i \in N~ -\epsilon \leq 0
でした。

さて、
もし、\exists ~i \in N ~~s.t.~~ -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} >  0,  or -\epsilon > 0であれば、私たちは\min_{w,b,\epsilon} P(w,b,\epsilon)を解くことができません。なぜなら\alpha,\muをどこまでも大きくすることができてしまい、P(w,b,\epsilon)の値が\inftyをとってしまいます。

しかし、\forall ~i \in N, -\{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \}\leq 0~ -\epsilon \leq 0を二つとも満たしているとき、

\max_{\alpha \geq 0,\mu \geq 0} \{-\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i \} = 0
となります。

この時、
\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i + \max_{\alpha \geq 0,\mu \geq 0} \{-\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i \}
= \min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i

となり、元の最適化問題が現れました。
つまり、制約を満たしているときは、\min_{w,b} \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_iに解が与えられ、満たしていないときはこの最適化問題は解けないということになり、同等であることがわかります。

双対変数について最大化し、主変数について最小化する

次に、D(\alpha,\mu)を主変数について最適化することで定義します。

D(\alpha,\mu) := \min_{w,b,\epsilon,\alpha,\mu} L(w,b,\epsilon,\alpha,\mu)

次に、
D(\alpha,\mu)\alpha,\muについて最大化することを考えます。

\max_{\alpha,\mu} D(\alpha,\mu) = \max_{\alpha,\mu} \min_{w,b,\epsilon,\alpha,\mu} L(w,b,\epsilon,\alpha,\mu)

この問題は双対問題と呼ばれます。先ほどと違う点に注意が必要です。
先ほどの主問題では、初めに双対変数について最大化し、そのあと主変数について最小化しました。今回はまず初めに、主変数について最小化し、そのあとで双対変数について、最大化します。

\min_{w,b,\epsilon,\alpha,\mu} L(w,b,\epsilon,\alpha,\mu)について、それぞれの変数による偏微分は

\frac{\partial L}{\partial w} = w - \sum_{i \in {1,2,..,n}} \alpha_i y_i x_i = 0
\frac{\partial L}{\partial b} = - \sum_{i \in {1,2,..,n}} \alpha_i y_i = 0
\frac{\partial L}{\partial \epsilon} = C - \alpha_i - \mu_i = 0
となります。

Lを各項について分配法則を使い、書き換えます。
\begin{eqnarray*} L &=& \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i -\sum_{i \in {1,2..n}} \alpha_i \{y_i (w^T \phi(x_i) + b) -1 + \epsilon_i \} - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i\\ &=& \frac{1}{2}||W||^2 + C\sum_{i \in N} \epsilon_i -\sum_{i \in {1,2,..,n}} \alpha_i y_i w^T \phi(x) + \alpha_i y_i b - \alpha_i + \alpha_i \epsilon_i - \sum_{i \in {1,2,..,n}} \mu_i \epsilon_i\\ &=& \frac{1}{2}||W||^2 - \sum_{i \in {1,2,..,n}} \alpha_i y_i w^T x_i - b \sum_{i \in {1,2,..,n}} \alpha_i y_i + \sum_{i \in {1,2,..,n}} \alpha_i + \sum_{i \in {1,2,..,n}} (C - \alpha_i - \mu_i) \epsilon_i \end{eqnarray*}

この式に先ほどの偏微分によって得られた方程式を代入します。

-\frac{1}{2} \sum_{i,j \in {1,2,..,n}} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j) + \sum_{i \in {1,2,..,n}} \alpha_i

そして、
\begin{eqnarray*} C - \alpha_i - \mu_i &=& 0 \\ C - \alpha_i &=& \mu \geq 0\\ C - \alpha_i & \geq & 0 \end{eqnarray*}
であるので、

\max_{\alpha} -\frac{1}{2}\sum_{i,j \in {1,2,..,n}} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j)+\sum_{i \in {1,2,..,n}} \alpha_i
s.t. \sum_{i \in {1,2,..,n}} \alpha_i y_i = 0 ~~~ , 0 \leq \alpha_i \leq C
と、書き換えられます。
よって最終的に双対問題は以下のように表されます。

\min_{\alpha} \frac{1}{2}\sum_{i,j \in {1,2,..,n}} \alpha_i \alpha_j y_i y_j \phi(x_i)^T \phi(x_j)-\sum_{i \in {1,2,..,n}} \alpha_i
s.t. \sum_{i \in {1,2,..,n}} \alpha_i y_i = 0 ~~~ , 0 \leq \alpha_i \leq C

Reference
https://www.amazon.co.jp/%E3%82%B5%E3%83%9D%E3%83%BC%E3%83%88%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB%E3%83%9E%E3%82%B7%E3%83%B3-%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%83%97%E3%83%AD%E3%83%95%E3%82%A7%E3%83%83%E3%82%B7%E3%83%A7%E3%83%8A%E3%83%AB%E3%82%B7%E3%83%AA%E3%83%BC%E3%82%BA-%E7%AB%B9%E5%86%85-%E4%B8%80%E9%83%8E/dp/4061529064

コメント

このブログの人気の投稿

ヘッセ行列

Introduction English ver 今日は、ヘッセ行列を用いたテイラー展開について書こうと思います。 これは最適化を勉強するにあたって、とても大事になってくるので自分でまとめて残しておくことにしました。とくに、機械学習では最適化を必ず行うため、このブログのタイトルにもマッチした内容だと思います。 . 概要 ヘッセ行列の定義 ベクトルを用いたテイラー展開 関数の最適性 ヘッセ行列の定義 仮定 f は次のような条件を満たす関数です。. f はn次元ベクトルから実数値を出力します。 このベクトルは次のように表せます。 x = [x_1,x_2,,,,x_n] \forall x_i , i \in {1,2,,,n}, f は二回偏微分可能です。 定義 ヘッセ行列は \frac{\partial^2}{\partial x_i \partial x_j}を (i,j)要素に持ちます。 よってヘッセ行列は次のように表せます。 \[ H(f) = \left( \begin{array}{cccc} \frac{\partial^ 2}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & &\ldots \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^ 2 f}{\partial x_1 \partial x_2} & \frac{\partial^ 2 f}{\partial x_2^ 2} & \ldots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \frac{\partial^ 2 f}{\partial x_n \partial x_2} & \ldo...

Implementation of Robbins monro

Robbins monro の実装 sorry, this page is Japanese only.   今回はRobbins monro の実装をしてみました。 Robbins monroは確率勾配降下法の学習率を入りテーション回数の逆数で割っていくものです。 使っているprogram言語はpython 3です。osはwindowsです。(macほしい...) アルゴリズム 確率勾配降下方とは目的関数の最適解を求めるアルゴリズムです。目的関数をf(X)とすると、手順は以下のようになっています。 初期学習率n_0を決めます。訓練データDを用意します。この訓練データは複数の初期値の集まりです。 訓練データから一つ初期値をランダムに取り出し、これをx_0とし、最初の予測値とします。 次の式に現在の予測値x_0を代入し、新たな予測値x_{n+1}を得ます。x_{n+1} = x_{n} - \frac{n_0}{n} grad f(X_n) 収束して入れば4へ、収束していなければ2で得られた値x{n+1}を新たにx_nとしてもう一度2を行う。 訓練データを一周していなければ2へ、一周していれば各初期値から得られた解の中から目的関数を最も小さくするものを選ぶ。   実装例 以下の目的関数を最小化させてみましょう。 f(x,y) = (x-2)^2 + (y-3)^2 コマンドラインでpythonを実行していきます。 予想通り、(2,3)という解を導き出してくれました。目的関数が簡単だったので、初期値をどの値でとってもばっちり正解にたどり着いてくれました。 CODE 以下にRobbins monroの関数だけ置いておきます。 こちら にすべてのコードを載せています。 def Robbins_monro(function,grad,number_variable_gradient): init_learning_rate = 1.5 stepsize = 1000 init_value = np.array([range(-1000,1020,20) for i in range(number_v...

カーネルK-means 理論編

Introduction English ver 今日は、カーネルK-meansの理論について書きます。カーネルK-meansは通常のK-meansの欠点を補うことができます。通常のK-meansの欠点とカーネルK-meansの強みも説明します。もし、まだ御覧になられていなければ、通常の K-means 理論編 の記事を見ていただけるとよいのではないかと思います。 カーネルK-meansの実装編 も併せてご覧ください。 概要 K-meansの弱点 カーネルトリック カーネルK-means アルゴリズム K-meansの弱点 例えば、次のようなデータを用意します。 このデータはK-meansによってうまく分類することはできません。なぜなら通常のK-meansでは、データとプロトタイプのユークリッド距離に依存しているからです。そのため、このような円状に分布しているデータはうまく分類することができません。 プロトタイプとはそれぞれのクラスにあり、そのクラスを代表するようなもののことです。K-meansでは各クラスの平均ベクトルとなります。それゆえ、以下のような分類になってしまいます。 このようなデータではK-meansはうまくいきません。 K-meansで分類できるデータセットは次のように各クラスで固まっている必要があります。 カーネルK-meansはK-meansの弱点を補います。 カーネルトリック 初めに、カーネルトリックを説明します。 線形分離できないようなデータXを例えば次のように線形分離できるように\phi(x)に送る写像\phiを考えます。 カーネルは次のように定義されます。 K(x,y) = \phi(x)^T \phi(y) \phiを具体的に計算することは難しいですが、K(x,y)を計算することなら簡単です。 この手法をカーネルトリックと呼ばれます。 カーネルK means K-meansの目的関数を復習しておきます。 J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n-\mu_k||^2 ここで、 プロトタイプは\mu_i ~\forall k \in Kとしま...